作者:禅与计算机程序设计艺术
1.简介
Image classification and segmentation are the two most common applications of deep learning in medical imaging. However, it is not straightforward to use transfer learning methods for these tasks due to different dataset distributions, input sizes, and complex model architectures. In this paper, we propose a new method called Transfer Learning (TL) for image classification and segmentation based on deep neural networks with convolutional layers. TL leverages pre-trained models as fixed feature extractors from large datasets such as ImageNet or PASCAL VOC to adapt them to our specific task at hand. This allows us to significantly reduce the amount of training data required and speed up the convergence time of our models by using knowl
本文介绍了一种名为Transfer Learning (TL) 的方法,用于改善医疗成像中的深度学习模型,特别是图像分类和分割任务。TL利用预训练模型作为固定特征提取器,减少训练数据需求,加快模型收敛。实验表明,TL在准确性与计算效率方面优于传统CNN,并讨论了未来可能的改进方向。
订阅专栏 解锁全文
4085

被折叠的 条评论
为什么被折叠?



