leetcode题解-128. Longest Consecutive Sequence

题目:给出一个没有排序的整数数组,找出最长的连续元素序列的长度。
例如,
给定[100,4,200,1,3,2],
最长的连续元素序列是[1,2,3,4]。返回它的长度:4。
你的算法应该运行在O(n)的复杂度。

分析:将所有数都加入集合或者MAP中,然后再遍历这些数。我们以MAP举例,选取关键元素向上或者向下检查有无连续值。比如选取关键元素4,先往上找,MAP中不存在5。再在MAP中往下找,依次再找到3,2,1。此时更新current_max 为4,即最大连续长度为4。值得注意的是,此时已经将元素3,2,1的value都设为1,以后这些元素不再作为关键元素查找,可以节省时间。

因为我们能O(1)的判断某个数是否在集合中,时间复杂度是O(N),空间复杂度是O(N)。

import java.util.HashMap;

public class Solution {
    // Sort & search: space O(1), time O(n logn)
    // HashMap: space O(n), time O(n)
    public static int longestConsecutive(int[] num) {
        HashMap<Integer, Integer> hs = new HashMap<Integer, Integer>();
        if(num.length == 0) return 0;
        for(int i: num){
            hs.put(i, 0);
        }
        int maxl = 1;
        for(int i: num){
            if (hs.get(i) == 1) continue;

            int tmp = i;
            int current_max = 1;
            while(hs.containsKey(tmp+1)){
                current_max ++;
                tmp ++;
                hs.put(tmp, 1);
            }

            tmp = i;
            while(hs.containsKey(tmp-1)){
                current_max ++;
                tmp --;
                hs.put(tmp, 1);
            }

            maxl = Math.max(current_max, maxl);
        }

        return maxl;
    }
    public static void main(String[] args) {
        int[] nums = {};
        System.out.println(longestConsecutive(nums));
    }
}
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问,比如最长公共子序列、背包问、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的型,很多目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的目,按照难度从简单到困难排列。每个目都有详细的目描述、输入输出样例、目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问和最优子结构性质的问。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问,如背包问、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的目涵盖了各种难度级别和场景的问。从简单的斐波那契数列、迷宫问到可以用于实际应用的背包问、最长公共子序列等,难度不断递进且话丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问拆分成子问的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法,例如斐波那契数列、矩阵链乘法、背包问等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问。例如,经典的“爬楼梯”问,要求我们计算到n级楼梯的方案数。这个问的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问、保存中间状态来求解问。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问,但在某些场景下并不适用。例如,某些问的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解都非常重要。除了刷以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值