Irving_zhang的专栏

对代码的不满足,是所有程序员的本质特征

对话系统综述

在人工智能领域,模仿人类交谈能力的尝试可以追溯到人工智能的早期阶段。在1950年,艾伦·图灵(Alan Turing)提出了一种方法来测试一台机器的智能水平,这个机器被普遍称为图灵测试或模仿游戏。在图灵测试中,一台机器被要求与人交谈。机器的智能水平取决于机器如何能够欺骗人类评估者,使其相信机器是基...

2017-12-21 17:20:26

阅读数 6359

评论数 2

leetcode分类题解

leetcode的题解专栏多如牛毛,但很少有系统的全面的专栏。在专栏里,按照如下的分类方式进行刷题,从暴力解->优化解->最优解三个层次来分析题目,希望能够帮助到找工作的你。数组Remove Duplica...

2017-12-18 19:45:00

阅读数 1649

评论数 0

程序员书单

这里写链接内容天天刷微博知乎,自己的大脑早就已经信息过剩,不堪重负。碎片化时代不断消耗人的耐心,你有多久没充电了?读书或许是让你静下心的好方法。 这里列举的首先是技术书籍,然后是非技术书籍。 书籍以列表的形式展示,标记已读、想读、和未整理,期待同你一起进步。计算机经典 ——经典的力量,跨越时间...

2017-07-04 10:39:03

阅读数 965

评论数 1

NLP入门实例推荐(Tensorflow实现)

自然语言处理(NLP)是机器学习的应用之一,用于分析、理解和生成自然语言,以便人类与计算机,人类与人类更好的交流。自然语言处理按照任务类型可以分为分类、匹配、翻译、结构化预测、与序贯决策过程。自然语言处理中的绝大多数问题皆可归入下图其中的一个。这为我们学习自然语言处理提供了大的指导方向,让我们可以...

2017-04-06 17:34:18

阅读数 23889

评论数 9

第0节-斯坦福cs229机器学习笔记

国内本科和研究生对于机器学习的热情特别高涨,北邮研一开了一门机器学习与模式识别的课程100人的课容量,两秒就抢没了。然而据我观察很多同学学习机器学习的时候有两个问题,第一学习资料杂乱,符号标记不一致导致公式推导过程难以记忆。第二,缺少动手编程的机会,因此对很多公式理解不深刻。   斯坦福人工智能...

2017-01-15 11:14:52

阅读数 3951

评论数 1

蒙特卡洛采样与Gibbs采样

采样 采样问题指的是给定一个特定的概率分布p(z),得到一批符合这个概率分布的样本点。 采样的方法有很多,MCMC是其中的一类方法,意思是利用Mento Carlo和Markov Chain完成采样。 当然,要完成对各种分布的采样,有一个默认的假设,就是我们已经能够对均匀分布进行采样了(后面就专指...

2018-09-25 17:08:07

阅读数 131

评论数 0

leetcode题解-6. ZigZag Conversion

题意:将字符串按照锯齿形排列,然后把从上到下把所有行顺序输出,组成新的字符串。 例子: Input: s = “PAYPALISHIRING”, numRows = 3 Output: “PAHNAPLSIIGYIR” Example 2: Input: s = “PAYPALIS...

2018-08-28 15:42:26

阅读数 106

评论数 0

leetcode题解-3、Longest Substring Without Repeating Characters

题意:给定一个字符串,求最长不重复子串(非子序列)。 例子: Input: “abcabcbb” Output: 3 分析: “abc”, 它的长度为 3. Input: “bbbbb” Output: 1 分析: “b”, 它的长度为 1. Input: “pwwkew” ...

2018-08-27 15:12:02

阅读数 116

评论数 0

最长公共子序列、最长连续公共子序列、最长递增子序列

面试中除了排序问题,还会经常出现字符串的子序列问题,这里讲解使用动态规划解决三个常见的子序列问题: 1、最长公共子序列问题(LCS,longest-common-subsequence problem) 2、最长连续公共子序列问题 3、最长递增子序列(LIS,longest-incremen...

2018-04-04 17:49:02

阅读数 869

评论数 0

不可描述

服务器选择digitalocean,服务器端安装SS(参照:Shadowsocks 使用说明) # apt-get update // 更新源中包列表 # apt-get install python-pip ...

2018-02-03 11:05:41

阅读数 567

评论数 0

记忆网络系列之Recurrent Entity Network

这篇论文是facebook AI在2017年的ICLR会议上发表的,文章提出了Recurrent Entity Network的模型用来对world state进行建模,根据模型的输入对记忆单元进行实时的更新,从而得到对world的一个即时的认识。该模型可以用于机器阅读理解、QA等领域。本文参考了...

2018-01-30 12:15:03

阅读数 1175

评论数 0

记忆网络系列之Key Value Memory Network

在上一篇End to end memory network中提到,在问答系统中加入KB(knowledge bases)能提高训练的效果。但是一些KB,如FreebaseKB有内在的局限性,即1、不完整;2、有固定的模式不能支持所有类型的答案。因此即使KB方式能够满足特定领域的问题,但是不能扩大规...

2018-01-26 16:30:06

阅读数 1882

评论数 1

记忆网络模型系列之End to End Memory Network

上文记忆网络介绍模型并非端到端的QA训练,该论文End-To-End Memory Networks就在上文的基础上进行端到端的模型构建,减少生成答案时需要事实依据的监督项,在实际应用中应用意义更大。 本文分为三个部分,分别是数据集处理、论文模型讲解及模型构造、模型训练。主要参考代码为MemN2...

2018-01-19 21:55:28

阅读数 2762

评论数 0

记忆网络Memory Network

在本专栏的第一篇文章对话系统综述中提到,seq2seq中的记忆依靠rnnCell或者lstmCell实现,但是rnn和lstm的记忆能力实在有限,最多也就记忆十几个时间步长。因此当句子长度增长时或者需要添加先验知识时,seq2seq就不能满足此时对话系统的需求了。 比起人工增加RNN隐藏状态大小...

2018-01-18 11:55:10

阅读数 7687

评论数 1

实现基于seq2seq的聊天机器人

前几篇博客介绍了基于检索聊天机器人的实现、seq2seq的模型和代码,本篇博客将从头实现一个基于seq2seq的聊天机器人。这样,在强化学习和记忆模型出现之前的对话系统中的模型就差不多介绍完了。后续将着重介绍强化学习和记忆模型在对话系统中的应用。 基于检索的聊天机器人的实现 seq2seq模型...

2018-01-17 17:42:21

阅读数 7462

评论数 4

python 项目自动生成requirements.txt文件

我们为什么要使用requirements.txt呢? 主要使用目的: 任何应用程序通常需要设置安装所需并依赖一组类库来满足工作要求。要求文件是指定和一次性安装包的依赖项具体一整套方法。 requirements.txt文件格式: requests==1.2.0 Flask==0.10...

2018-01-17 17:05:43

阅读数 7848

评论数 1

Tensorflow模型的保存与恢复

最近在写对话生成的代码时,遇到一个问题就是在预测阶段,对于相同的输入,每一次生成的文本都不一样,而且生成的结果乱七八糟。因此定位到是训练好的模型没有restore,特此记录一下TensorFlow中模型的保存与恢复问题,即tf.train.saver函数的使用。 创建Saver 模型保存,...

2018-01-17 09:49:28

阅读数 2367

评论数 0

面试中常用的排序算法

排序算法是算法的入门知识,其经典思想可以用于很多算法当中。因为其实现代码较短,应用较常见。所以在面试中经常会问到排序算法及其相关的问题。但万变不离其宗,只要熟悉了思想,灵活运用也不是难事。一般在面试中最常考的是快速排序和归并排序,并且经常有面试官要求现场写出这两种排序的代码。对这两种排序的代码一定...

2017-12-29 11:47:13

阅读数 870

评论数 0

tensorflow中的seq2seq的代码详解

seq2seq模型详解中我们给出了seq2seq模型的介绍,这篇文章介绍tensorflow中seq 2seq的代码,方便日后工作中的调用。本文介绍的代码是版本1.2.1的代码,在1.0版本后,tensorflow要重新给出一套seq2seq的接口,把0.x的seq2seq搬到了legacy_s...

2017-12-25 22:28:13

阅读数 4937

评论数 0

seq2seq模型详解

在李纪为博士的毕业论文中提到,基于生成的闲聊机器人中,seq2seq是一种很常见的技术。例如,在法语-英语翻译中,预测的当前英语单词不仅取决于所有前面的已翻译的英语单词,还取决于原始的法语输入;另一个例子,对话中当前的response不仅取决于以往的response,还取决于消息的输入。其实,se...

2017-12-25 09:41:04

阅读数 6775

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭