堆与堆排序
堆排序是一种另辟蹊径的排序方法,主要是利用了堆的性质来实现的。当理解什么是堆之后,堆排序是很容易理解了。堆是一种特殊的完全二叉树,想要理解堆还得从二叉树说起。
堆排序的时间复杂度:O(n*logn)
堆排序的空间复杂度:O(1),非常优秀的常数级复杂度
本文的按照完全二叉树,堆,堆排序的顺序来介绍。
一、完全二叉树
1. 二叉树
二叉树是指树的每个节点最多只有两个子节点树(也就是可以有2个,1个或者没有子节点),下面这两个都是二叉树
2. 完全二叉树
完全二叉树是二叉树的一种,它有如下两个特点:
(1)除了最后一层节点,其他层都是满的;
(2)最后一层的节点可以不是满的,但是向左对齐的
所谓向左对齐,指从左到右,子节点依次相邻且没有断开
3. 完全二叉树的数组表示法
正是因为完全二叉树的优秀结构,所以我们可以用数组来表示它。我们先来观察一下完全二叉树的结构:
可以发现,任意节点n的左儿子节点是2n+1,任意节点n的右儿子节点是2n+2。
所以完全二叉树可以用数组来表示。如果想获得节点n的左或者右儿子节点,只需要按照上述公式来计算即可。如下图所示,黑色为节点编号,蓝色为该节点存储的值。
4. 堆
堆是一种特殊的完全二叉树,它分为最大堆和最小堆两种。它在满足完全二叉树的性质(可以用数组来表示)的同时,还满足如下性质:
(1)最大堆的任意一个节点中存储的数据都比该节点的儿子节点大(如果该节点有儿子的话)
(2)最小堆的任意一个节点中存储的数据都比该节点的儿子节点小(如果该节点有儿子的话)
(3)单个节点也是堆
接下来介绍堆的构造方法。在这里以最大堆为例。
堆的构造方法是自下而上构造,用一个例子来说明这个过程。
对于如下所示的一个树,我们通过交换节点的值来将它转化为最大堆。
我们发下这棵树不是最大堆,因为下图中圈出的部分不符合最大堆的条件(父节点2<儿子节点3, 父节点3<儿子节点8)。
整体思路为:从最后一个节点开始,依次把以该节点为父节点的树构造成堆。那么就有人问了,为什么不直接把根节点构造成堆啊?这么做的目的其实是为了构造一种巧妙的递归过程,先不要纠结,后面就懂了。
首先是节点6,发现它没有根节点,那么它已经是堆了,什么都不做。
接下来,分别是节点5,节点4和节点3,由于同样没有儿子,它们都已经是堆了,所以什么都不做。
接下来是2号节点。节点2有儿子,它比它的左儿子节点5小,也比它的右儿子节点6,所以不符合条件。我们对其进行操作使以节点2为根节点的树变成最大堆。
(1)首先找出儿子节点中的最大值(节点5)
(2)交换根节点2和儿子节点5中存储的数据
经过变换后节点2符合最大堆的条件了。
接下来使节点1,它符合最大堆的条件,所以什么都不做。
最后就是节点0,它不符合尽最大堆的条件,我们需要对他进行变换。
(1)首先找出儿子节点中的最大值(节点2)
(2)交换根节点0和儿子节点2中存储的数据
交换后的树使蓝色圈中的节点满足条件了,但是却改变了右子树,导致右子树右不满足条件了,所以辞书需要通过递归来重新构造右子树为堆。
对于右子树,我们的操作为
(1)首先找出儿子节点中的最大值(节点6)
(2)交换根节点2和儿子节点6中存储的数据
变换后我们得到了最大堆。
5. 堆排序
堆排序本质上就是用堆来实现排序。以上一节中的最大堆为例,我们来演示下这个过程。
原始的树为
采取上一节的方法构造最大堆,得到
那么节点0中存的一定是最大值,那么我们把它拿出来。
之后用最后一个节点6来代替根节点0,这么做是为了不破坏完全二叉树的结构。
得到一个新的树
这个树的特点是除了根节点外的所有节点都是最大堆!!!
因为我们只改变了根节点的值,没有改变动其他节点的值,虽然删了一个节点,但是却没有破坏跟其有关的最大堆的结构!!!
回想一下上一节构造最大堆的方法为自后向前,而现在后面的节点都已经是最大堆了,所以我只需要从根节点开始重新构造最大堆即可。步骤如下:
得到最大堆
之后取出节点0的值并用最后一个节点5代替节点0
重复上述操作直到取出所有的数字,便完成排序。
最后有一点要说的是,上述操作中,我们是把根结点拿出来之后用最后一个节点代替根节点,在代码实现中却不是如此,我们每次需要交换二者的位置,并用一个变量len来记录当前堆的节点个数。每次访问儿子的时候,如儿子的编号大于len时,认为树中没有这个节点。这样做的好处是让算法的时间复杂度变为O(1)级别。
这样我们需要用最大堆实现从小到大排序,需要用最小堆实现从大到小排序。
下面给出最大堆从小到大排序代码实现
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
//构造堆
//tree 原始数组的引用
//curId 当前要构造堆的节点编号
//len 当前树的节点个数
void makeHeap(vector<int> &tree, int curId, int len)
{
int leftId = 2 * curId + 1;//左儿子
int rightId = 2 * curId + 2;//右儿子
int maxId = curId;//设置初始的最大的节点编号
//找到最大的节点编号
if (leftId < len)
{
if (tree[leftId]>tree[maxId])
{
maxId = leftId;
}
}
if (rightId < len)
{
if (tree[rightId]>tree[maxId])
{
maxId = rightId;
}
}
//如果最大的节点不是根节点
if (maxId != curId)
{
//交换根节点和最大节点
swap(tree[maxId], tree[curId]);
//重新构造最大节点的堆
makeHeap(tree, maxId, len);
}
}
void heapSort(vector<int> &tree)//堆排序
{
//自下而上构造堆
for (int j = tree.size() - 1; j >= 0; j--)
{
makeHeap(tree, j, tree.size());
}
//每次交换最大的节点和最后一个节点,从根节点重新构造堆,不要忘记每次把节点的个数减1
for (int i = 1; i < tree.size(); i++)
{
swap(tree[0], tree[tree.size() - i]);
makeHeap(tree, 0, tree.size() - i);
}
}
int main()
{
vector<int> numVec = {5,3,7,0,1,9,6,8,2,4};
heapSort(numVec);
//打印结果
for (int i = 0; i < numVec.size(); i++)
{
cout << numVec[i] << " ";
}
cout << endl;
return 0;
}
输出为