深入理解堆与堆排序

堆与堆排序

堆排序是一种另辟蹊径的排序方法,主要是利用了堆的性质来实现的。当理解什么是堆之后,堆排序是很容易理解了。堆是一种特殊的完全二叉树,想要理解堆还得从二叉树说起。
堆排序的时间复杂度:O(n*logn)
堆排序的空间复杂度:O(1),非常优秀的常数级复杂度
本文的按照完全二叉树,堆,堆排序的顺序来介绍。

一、完全二叉树

1. 二叉树

二叉树是指树的每个节点最多只有两个子节点树(也就是可以有2个,1个或者没有子节点),下面这两个都是二叉树
在这里插入图片描述

2. 完全二叉树

完全二叉树是二叉树的一种,它有如下两个特点:
(1)除了最后一层节点,其他层都是满的;
(2)最后一层的节点可以不是满的,但是向左对齐的
所谓向左对齐,指从左到右,子节点依次相邻且没有断开
在这里插入图片描述

3. 完全二叉树的数组表示法

正是因为完全二叉树的优秀结构,所以我们可以用数组来表示它。我们先来观察一下完全二叉树的结构:
在这里插入图片描述
可以发现,任意节点n的左儿子节点是2n+1,任意节点n的右儿子节点是2n+2
所以完全二叉树可以用数组来表示。如果想获得节点n的左或者右儿子节点,只需要按照上述公式来计算即可。如下图所示,黑色为节点编号,蓝色为该节点存储的值。在这里插入图片描述

4. 堆

堆是一种特殊的完全二叉树,它分为最大堆最小堆两种。它在满足完全二叉树的性质(可以用数组来表示)的同时,还满足如下性质:
(1)最大堆的任意一个节点中存储的数据都比该节点的儿子节点大(如果该节点有儿子的话)
(2)最小堆的任意一个节点中存储的数据都比该节点的儿子节点小(如果该节点有儿子的话)
(3)单个节点也是堆
在这里插入图片描述
接下来介绍堆的构造方法。在这里以最大堆为例。
堆的构造方法是自下而上构造,用一个例子来说明这个过程。
对于如下所示的一个树,我们通过交换节点的值来将它转化为最大堆。
在这里插入图片描述
我们发下这棵树不是最大堆,因为下图中圈出的部分不符合最大堆的条件(父节点2<儿子节点3, 父节点3<儿子节点8)。
在这里插入图片描述
整体思路为:从最后一个节点开始,依次把以该节点为父节点的树构造成堆。那么就有人问了,为什么不直接把根节点构造成堆啊?这么做的目的其实是为了构造一种巧妙的递归过程,先不要纠结,后面就懂了。

首先是节点6,发现它没有根节点,那么它已经是堆了,什么都不做。
接下来,分别是节点5,节点4和节点3,由于同样没有儿子,它们都已经是堆了,所以什么都不做。

接下来是2号节点。节点2有儿子,它比它的左儿子节点5小,也比它的右儿子节点6,所以不符合条件。我们对其进行操作使以节点2为根节点的树变成最大堆。
(1)首先找出儿子节点中的最大值(节点5)
(2)交换根节点2和儿子节点5中存储的数据
在这里插入图片描述
经过变换后节点2符合最大堆的条件了。
在这里插入图片描述
接下来使节点1,它符合最大堆的条件,所以什么都不做。
最后就是节点0,它不符合尽最大堆的条件,我们需要对他进行变换。
(1)首先找出儿子节点中的最大值(节点2)
(2)交换根节点0和儿子节点2中存储的数据
在这里插入图片描述
交换后的树使蓝色圈中的节点满足条件了,但是却改变了右子树,导致右子树右不满足条件了,所以辞书需要通过递归来重新构造右子树为堆。
在这里插入图片描述
对于右子树,我们的操作为
(1)首先找出儿子节点中的最大值(节点6)
(2)交换根节点2和儿子节点6中存储的数据
在这里插入图片描述
变换后我们得到了最大堆。
在这里插入图片描述

5. 堆排序

堆排序本质上就是用堆来实现排序。以上一节中的最大堆为例,我们来演示下这个过程。
原始的树为
在这里插入图片描述
采取上一节的方法构造最大堆,得到
在这里插入图片描述
那么节点0中存的一定是最大值,那么我们把它拿出来。
在这里插入图片描述
之后用最后一个节点6来代替根节点0,这么做是为了不破坏完全二叉树的结构。
在这里插入图片描述
得到一个新的树
在这里插入图片描述
这个树的特点是除了根节点外的所有节点都是最大堆!!!
因为我们只改变了根节点的值没有改变动其他节点的值虽然删了一个节点但是却没有破坏跟其有关的最大堆的结构!!!
回想一下上一节构造最大堆的方法为自后向前,而现在后面的节点都已经是最大堆了,所以我只需要从根节点开始重新构造最大堆即可。步骤如下:
在这里插入图片描述
在这里插入图片描述
得到最大堆
在这里插入图片描述
之后取出节点0的值并用最后一个节点5代替节点0
在这里插入图片描述
重复上述操作直到取出所有的数字,便完成排序。
最后有一点要说的是,上述操作中,我们是把根结点拿出来之后用最后一个节点代替根节点,在代码实现中却不是如此,我们每次需要交换二者的位置,并用一个变量len来记录当前堆的节点个数。每次访问儿子的时候,如儿子的编号大于len时,认为树中没有这个节点。这样做的好处是让算法的时间复杂度变为O(1)级别
这样我们需要用最大堆实现从小到大排序,需要用最小堆实现从大到小排序
下面给出最大堆从小到大排序代码实现

#include <iostream>
#include <vector>
#include <cmath>
using namespace std;

//构造堆
//tree 原始数组的引用
//curId 当前要构造堆的节点编号
//len 当前树的节点个数
void makeHeap(vector<int> &tree, int curId, int len)
{
	int leftId = 2 * curId + 1;//左儿子
	int rightId = 2 * curId + 2;//右儿子
	int maxId = curId;//设置初始的最大的节点编号

	//找到最大的节点编号
	if (leftId < len)
	{
		if (tree[leftId]>tree[maxId])
		{
			maxId = leftId;
		}
	}
	if (rightId < len)
	{
		if (tree[rightId]>tree[maxId])
		{
			maxId = rightId;
		}
	}

	//如果最大的节点不是根节点
	if (maxId != curId)
	{
		//交换根节点和最大节点
		swap(tree[maxId], tree[curId]);
		//重新构造最大节点的堆
		makeHeap(tree, maxId, len);
	}
}

void heapSort(vector<int> &tree)//堆排序
{
	//自下而上构造堆
	for (int j = tree.size() - 1; j >= 0; j--)
	{
		makeHeap(tree, j, tree.size());
	}
	//每次交换最大的节点和最后一个节点,从根节点重新构造堆,不要忘记每次把节点的个数减1
	for (int i = 1; i < tree.size(); i++)
	{
		swap(tree[0], tree[tree.size() - i]);
		makeHeap(tree, 0, tree.size() - i);
	}
}

int main()
{
	vector<int> numVec = {5,3,7,0,1,9,6,8,2,4};
	heapSort(numVec);
	//打印结果
	for (int i = 0; i < numVec.size(); i++)
	{
		cout << numVec[i] << " ";
	}
	cout << endl;
	return 0;
}

输出为
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值