01背包问题详解(浅显易懂)

01背包问题详解

01背包是一种动态规划问题。动态规划的核心就是状态转移方程,本文主要解释01背包状态转移方程的原理。

问题描述

01背包问题可描述为如下问题:
有一个容量为V的背包,还有n个物体。现在忽略物体实际几何形状,我们认为只要背包的剩余容量大于等于物体体积,那就可以装进背包里。每个物体都有两个属性,即体积w和价值v。
问:如何向背包装物体才能使背包中物体的总价值最大?

为什么不用贪心?

我在第一次做这个题目时考虑的是贪心算法。所谓贪心问题,就是每一步决策都采取最优解,按照此方案最后结果也是最优解。
为什么这个问题不能用贪心呢?
举个例子
我的背包容量为10,而且有4个物体,它们的体积和价值分别为
w1 = 8, v1 = 9
w2 = 3, v2 = 3
w3 = 4, v3 = 4
w4 = 3, v4 = 3
贪心是每一步采取最优拿法,即每一次都优先拿价值与体积比值最大的物体
c1 = v1/w1 = 1.125(最大)
c2 = v2/w2 = 1
c3 = v3/w3 = 1
c4 = v4/w4 = 1
所以优先拿第一个物体,随后背包再也装不下其他物体了,则最大价值为9。
但是这个问题的最优解是取物体2,3,4装进背包,最大价值为3+4+3=10!!!
所以这个问题不可以用贪心法来处理。

原始的 01背包

01背包的状态转移方程为
f[i][j] = max(f[i - 1][j], f[i - 1][j - w[i]] + v[j])

i代表对i件物体做决策,有两种方式—放入背包和不放入背包。
j表示当前背包剩余的容量。

转移方程的解释:
创建一个状态矩阵f,横坐标 i 是物体编号,纵坐标 j 为背包容量。
首先将 f 第0行和第0列初始化为0 (代码里面将整个f初始化为0了,其实只初始化第0行和第0列就够了)。这个表示不放物体时最大价值为0 。(物体编号从1开始)
接下来依次遍历f的每一行。如下所示。

for (int i = 1; i <= n; i++)
{
	for (int j = V; j >= 0; j--)
	{
		if (j >= w[i])//如果背包装得下当前的物体
		{
			f[i][j] = max(f[i - 1][j], f[i - 1][j - w[i]] + v[i]);
		}
		else//如果背包装不下当前物体
		{
			f[i][j] = f[i - 1][j];
		}
	}
}

如果背包装得下当前的物体,在遍历过程中分别计算第i件物体放入不放入背包的价值,取其中大的做为当前的最大价值。
如果背包装不下当前物体那么第i个物体只有不放入背包一种选择。

不放入背包时:第i次决策后的最大价值和第i-1次决策时候的价值是一样的(还是原来的那些物体,没多没少)。
放入背包时:第i次决策后的价值为 第i-1次决策时候的价值 加上 当前物体的价值v[j]物体放入背包后会使背包容量变为 j即没放物体之前背包的容量为j - w[i]


#include <iostream>
#include <vector>
using namespace std;
#define max(N1,N2) N1>N2?N1:N2
int main()
{
	/*
	第一行输入背包容量V和物体的个数n
	接下来有n行,每行包含两个数字,分别为该物体的花费和价值
	*/
	vector<int> w, v;//w为花费,v为价值
	vector<vector<int>> f;//f状态矩阵
	int V, n;//V背包容量,n物体数
	while (cin >> V >> n)
	{
		w.clear();
		v.clear();
		f.clear();
		w.push_back(0);
		v.push_back(0);

		//输入原始数据
		for (int i = 1; i <= n; i++)
		{
			int cur_w, cur_v;
			cin >> cur_w >> cur_v;
			w.push_back(cur_w);
			v.push_back(cur_v);
		}

		//初始化状态矩阵
		for (int i = 0; i <= n; i++)
		{
			vector<int> buff(V + 1, 0);
			f.push_back(buff);
		}

		//动态规划过程
		for (int i = 1; i <= n; i++)
		{
			for (int j = V; j >= 0; j--)
			{
				if (j >= w[i])
				{
					f[i][j] = max(f[i - 1][j], f[i - 1][j - w[i]] + v[i]);
				}
				else
				{
					f[i][j] = f[i - 1][j];
				}
			}
		}

		//输出答案
		int ans = f[n][V];
		cout << ans << endl;
	}
	return 0;
}

优化空间复杂度的 01背包

未优化时候状态转移方程为
f[i][j] = max(f[i - 1][j], f[i - 1][j - w[i]] + v[j])
遍历过程为

for (int i = 1; i <= n; i++)
{
	for (int j = V; j >= 0; j--)
	{
		if (j >= w[i])
		{
			f[i][j] = max(f[i - 1][j], f[i - 1][j - w[i]] + v[i]);
		}
		else
		{
			f[i][j] = f[i - 1][j];
		}
	}
}

可以发现如下问题:
(1)状态表f的遍历顺序为从第1行开始一行一行遍历,且在遍历第i行时候不会用到第i-2行数据,也就是i-2行及以前的数据没有用了,可以清除。同时,第i-1行的数据每个只会用到一次。
(2)遍历每一行时候只用到当前容量j和j-w[i]的数据,也就是第 i 次遍历只需要 第 i-1 次遍历中容量小于等于 j 的数据 。

所以我们可以按照如下方法优化f的空间复杂度:

f[j] = max(f[j], f[j - w[i]] + v[j])
for (int i = 1; i <= n; i++)
{
	for (int j = V; j >= 0; j--)
	{
		if (j >= w[i])
		{
			f[j] = max(f[j], f[j - w[i]] + v[i]);
		}
		else
		{
			f[j] = f[j];
		}
	}
}

从本质上说,这种优化方法针对了上述的两个问题:
(1)把遍历第i个物体和遍历第i-1个物体时的最大价值存在一个单元里。更新前f[j]存i-1的价值,更新后f[j]存i的价值。因为用不到i-2及以前的数据所以不需要存。因为以后不会再用到i-1的价值所以被覆盖了没问题
(2)j从背包容量V开始遍历,即从大到小遍历,保证了当前f[j]和f[j - w[i]]里面存的是i-1的数据,即等价于f([i])[j] = max(f([i - 1])[j], f([i - 1])[j - w[i]] + v[i]),从而和优化空间复杂度前状态转移方程的原理一致。
但仍存在一些问题,比如

else
{
	f[j] = f[j];
}

自己给自己赋值,是无用操作,所以j < w[i]时候什么都不做即可。换句话说,只需要遍历到j >= w[i],从而得到

for (int i = 1; i <= n; i++)
{
	for (int j = V; j >= w[i]; j--)
	{
		f[j] = max(f[j], f[j - w[i]] + v[i]);
	}
}

最终代码如下

/*

#include <iostream>
#include <vector>
using namespace std;
#define max(N1,N2) N1>N2?N1:N2
int main()
{
	/*
	第一行输入背包容量V和物体的个数n
	接下来有n行,每行包含两个数字,分别为该物体的花费和价值
	*/
	vector<int> w, v;//w为花费,v为价值
	vector<int> f;//f状态矩阵
	int V, n;//V背包容量,n物体数
	while (cin >> V >> n)
	{
		w.clear();
		v.clear();
		f.clear();
		w.push_back(0);
		v.push_back(0);

		//输入原始数据
		for (int i = 1; i <= n; i++)
		{
			int cur_w, cur_v;
			cin >> cur_w >> cur_v;
			w.push_back(cur_w);
			v.push_back(cur_v);
		}

		//初始化状态矩阵
		f = vector<int>(V + 1, 0);

		//动态规划过程
		for (int i = 1; i <= n; i++)
		{
			for (int j = V; j >= w[i]; j--)
			{
				f[j] = max(f[j], f[j - w[i]] + v[i]);
			}
		}

		//输出答案
		int ans = f[V];
		cout << ans << endl;
	}
	return 0;
}
  • 185
    点赞
  • 357
    收藏
    觉得还不错? 一键收藏
  • 32
    评论
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值