【PytorchBasics】Build Model

official doc

nn.Module

神经网络可以看做 layers 构成的复杂 nested structure。为了让构建网络的代码清晰且结构化,pytorch这样的引擎封装了大量 building blocks 用于构建网络,它们都继承自 torch.nn.Module。

Neural networks comprise of layers/modules that perform operations on data. The torch.nn namespace provides all the building blocks you need to build your own neural network. Every module in PyTorch subclasses the nn.Module. A neural network is a module itself that consists of other modules (layers). This nested structure allows for building and managing complex architectures easily.

常见的导入包:

import torch
from torch import nn

Get Device for Training

通过指定 device 我们可以在硬件加速器(如 GPU)上加速训练过程。

device = "cuda" if torch.cuda.is_available() else "cpu"

Define the Class

定义神经网络类的常规写法:

  • init() 函数中定义 layers 和操作
  • forward() 函数中定义前向过程(即如何将这些 layers 组合起来)
class NeuralNetwork(nn.Module):
	def __init__(self):
		super(NeuralNetwork, self).__init__()
		self.flatten = nn.Flatten()
		self.linear_relu_stack = nn.Sequential(
			nn.Linear(28*28, 512),
			nn.ReLU(),
			nn.Linear(512, 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值