pytorch学习笔记(4)-- 创建模型(Build Model)

系列文章

pytorch学习笔记(1)–QUICKSTART
pytorch学习笔记(2)–Tensor
pytorch学习笔记(3)–数据集与数据导入
pytorch学习笔记(4)–创建模型(Build Model)
pytorch学习笔记(5)–Autograd


一、 什么是神经网络

神经网络是按层连接的神经元的集合。 每个神经元都是一个小的计算单元,执行简单的计算来共同解决问题。 神经元分为 3 种类型的层:输入层、隐藏层和输出层。 隐藏层和输出层包含许多神经元。 神经网络模仿人脑处理信息的方式。

1. 神经网络的组成

(1)激活函数

激活函数决定神经元是否应该被激活。 神经网络中发生的计算包括应用激活函数。 如果神经元激活,则意味着输入很重要。 有不同种类的激活函数。 选择使用哪个激活函数取决于您想要的输出。 激活函数的另一个重要作用是为模型添加非线性

  • Binary
    f ( x ) = { 0 , if  x   <  0 1 , if  x   ≥  0 f(x) = \begin{cases} 0, & \text{if $x$ $ <$ 0} \\ 1, & \text{if $x$ $\geq$ 0} \\ \end{cases} f(x)={0,1,if x < 0if x  0

  • Sigmoid:用于预测输出节点介于 0 和 1 之间的概率
    f ( x ) = 1 1 + e − x f(x) = {1 \over {1+e^{-x}}} f(x)=1+ex1

  • Tanh:用于预测输出节点是否在 1 到 -1 之间,用于分类用例子。
    f ( x ) = e x − e − x e x + e − x f(x) =\frac {e^x-e^{-x}} {e^x+e^{-x}} f(x)=ex+exexex

  • ReLU
    f ( x ) = { 0 , if  x   <  0 x , if  x   ≥  0 f(x) = \begin{cases} 0, & \text{if $x$ $ <$ 0} \\ x, & \text{if $x$ $\geq$ 0} \\ \end{cases} f(x)={0,x,if x < 0if x  0

(2)权重

影响我们网络的输出与预期输出值的接近程度。 当输入进入神经元时,它会乘以权重值,所得输出要么被观察,要么被传递到神经网络中的下一层。 一层中所有神经元的权重被组织成一个张量。

(3) 偏置

弥补了激活函数的输出与其预期输出之间的差异。 低偏差值表明网络对输出形式做出更多假设,而高偏差值对输出形式做出更少假设。

二、创建一个神经网络

%matplotlib inline
import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets,transformers
 

1.选择一个用于训练的硬件设备

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} device'.format(device))

2.定义类

我们通过子类化 nn.Module 来定义神经网络,并在 __init__ 中初始化神经网络层。 每个nn.Module子类都实现了forward方法中对输入数据的操作。
我们的神经网络由以下部分组成:

  • 输入层具有 28x28 或 784 个特征/像素。
  • 第一个线性模块采用输入 784 个特征,并将其转换为具有 512 个特征的隐藏层。
  • ReLU 激活函数将应用于转换中。
  • 第二个线性模块将第一个隐藏层的 512 个特征作为输入,并将其转换到具有 512 个特征的下一个隐藏层。
  • ReLU 激活函数将应用于转换中。
  • 第三个线性模块将 512 个特征作为来自第二个隐藏层的输入,并将这些特征转换到输出层,其中 10 是类的数量。
  • ReLU 激活函数将应用于转换中。
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28,512),
            nn.ReLU(),
            nn.Linear(512,512),
            nn.ReLU(),
            nn.Linear(512,10),
            nn.ReLU(),
        )

    def forward(self,x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits
model = NeuralNetwork().to(device)
print(model)

输出:

NeuralNetwork(
  (flatten): Flatten()
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
    (5): ReLU()
  )
)

我们把输入数据X作为model的输入,模型开始执行forward,和一些后台操作,不要直接调用 model.forward() !!!
在输入上调用模型会返回一个二维张量,其中 dim=0 对应于每个类的 10 个原始预测值的每个输出,dim=1 对应于每个输出的各个值。我们通过将结果传递给 nn.Softmax 模块的实例来获得预测概率。

X = torch.rand(1, 28, 28, device=device)
logits = model(X)
print(logits.shape)
print(logits)
print(logits[0])
print(logits[0][1])
pred_probab = nn.Softmax(dim=1)(logits)
pred_probab0 = nn.Softmax(dim=0)(logits)
# print(pred_probab)
# print(pred_probab0)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")

输出:

在这里插入图片描述

三、模型Layers

我们将分解 FashionMNIST 模型中的各个层次。为了说明这一点,我们将采用小批量样本minibatch=3 张,大小为 28x28 的图像,看看当我们将其传递到网络时会发生什么。

input_image = torch.rand(3,28,28)
print(input_image.size())

输出:

torch.Size([3, 28, 28])

1.nn.Flatten

我们初始化 nn.Flatten 层,将每个 2D 28x28 图像转换为 784 个像素值的连续数组(维持小批量维度(在 dim=0 时))。

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.size())

输出:

torch.Size([3, 784])

2.nn.Linear

线性层是一个使用其存储的权重和偏差对输入应用线性变换的模块。

layer1 = nn.Linear(in_features=28*28, out_features=20)
hidden1 = layer1(flat_image)
print(hidden1.size())

输出:

torch.Size([3, 20])

3.nn.ReLU

非线性激活在模型的输入和输出之间创建复杂的映射。它们在线性变换后应用以引入非线性,帮助神经网络学习各种现象。
在此模型中,我们在线性层之间使用 nn.ReLU,但还有其他激活可以在模型中引入非线性。

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")

输出:

Before ReLU: tensor([[ 0.4158, -0.0130, -0.1144,  0.3960,  0.1476, -0.0690, -0.0269,  0.2690,
          0.1353,  0.1975,  0.4484,  0.0753,  0.4455,  0.5321, -0.1692,  0.4504,
          0.2476, -0.1787, -0.2754,  0.2462],
        [ 0.2326,  0.0623, -0.2984,  0.2878,  0.2767, -0.5434, -0.5051,  0.4339,
          0.0302,  0.1634,  0.5649, -0.0055,  0.2025,  0.4473, -0.2333,  0.6611,
          0.1883, -0.1250,  0.0820,  0.2778],
        [ 0.3325,  0.2654,  0.1091,  0.0651,  0.3425, -0.3880, -0.0152,  0.2298,
          0.3872,  0.0342,  0.8503,  0.0937,  0.1796,  0.5007, -0.1897,  0.4030,
          0.1189, -0.3237,  0.2048,  0.4343]], grad_fn=<AddmmBackward0>)


After ReLU: tensor([[0.4158, 0.0000, 0.0000, 0.3960, 0.1476, 0.0000, 0.0000, 0.2690, 0.1353,
         0.1975, 0.4484, 0.0753, 0.4455, 0.5321, 0.0000, 0.4504, 0.2476, 0.0000,
         0.0000, 0.2462],
        [0.2326, 0.0623, 0.0000, 0.2878, 0.2767, 0.0000, 0.0000, 0.4339, 0.0302,
         0.1634, 0.5649, 0.0000, 0.2025, 0.4473, 0.0000, 0.6611, 0.1883, 0.0000,
         0.0820, 0.2778],
        [0.3325, 0.2654, 0.1091, 0.0651, 0.3425, 0.0000, 0.0000, 0.2298, 0.3872,
         0.0342, 0.8503, 0.0937, 0.1796, 0.5007, 0.0000, 0.4030, 0.1189, 0.0000,
         0.2048, 0.4343]], grad_fn=<ReluBackward0>)

4.nn.Sequential

nn.Sequential 是模块的有序容器。数据按照定义的相同顺序传递通过所有模块。您可以使用顺序容器来组合一个快速网络,例如 seq_modules。

seq_modules = nn.Sequential(
    flatten,
    layer1,
    nn.ReLU(),
    nn.Linear(20, 10)
)
input_image = torch.rand(3,28,28)
logits = seq_modules(input_image)

5.nn.Softmax

神经网络的最后一个线性层返回 logits - [-infty, infty] 中的原始值 - 被传递到 nn.Softmax 模块。Logits 缩放为值 [0, 1],表示模型对每个类别的预测概率。 dim 参数指示值总和必须为 1 的维度。

softmax = nn.Softmax(dim=1)
pred_probab = softmax(logits)

四、模型参数

神经网络内的许多层都是参数化的,如在训练期间优化的相关权重和偏置, nn.Module 的子类会自动跟踪模型对象中定义的所有字段,并使用模型的parameters()或named_pa​​rameters()方法访问所有参数。
在此示例中,我们迭代每个参数,并打印其大小及其值的预览。

print(f"Model structure: {model}\n\n")

for name, param in model.named_parameters():
    print(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]} \n")

输出:

Model structure: NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)


Layer: linear_relu_stack.0.weight | Size: torch.Size([512, 784]) | Values : tensor([[ 0.0273,  0.0296, -0.0084,  ..., -0.0142,  0.0093,  0.0135],
        [-0.0188, -0.0354,  0.0187,  ..., -0.0106, -0.0001,  0.0115]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.0.bias | Size: torch.Size([512]) | Values : tensor([-0.0155, -0.0327], device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.2.weight | Size: torch.Size([512, 512]) | Values : tensor([[ 0.0116,  0.0293, -0.0280,  ...,  0.0334, -0.0078,  0.0298],
        [ 0.0095,  0.0038,  0.0009,  ..., -0.0365, -0.0011, -0.0221]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.2.bias | Size: torch.Size([512]) | Values : tensor([ 0.0148, -0.0256], device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.4.weight | Size: torch.Size([10, 512]) | Values : tensor([[-0.0147, -0.0229,  0.0180,  ..., -0.0013,  0.0177,  0.0070],
        [-0.0202, -0.0417, -0.0279,  ..., -0.0441,  0.0185, -0.0268]],
       device='cuda:0', grad_fn=<SliceBackward0>)

Layer: linear_relu_stack.4.bias | Size: torch.Size([10]) | Values : tensor([ 0.0070, -0.0411], device='cuda:0', grad_fn=<SliceBackward0>)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
pytorch-yolov4-master是一个基于PyTorch深度学习框架实现的YOLOv4目标检测算法的代码库。YOLOv4是一种先进的目标检测算法,具有快速、高效和准确的特点。 这个代码库提供了训练和测试YOLOv4模型的代码和工具。它包含了模型的网络架构定义、数据预处理、损失函数、模型训练和推理等功能。使用这个代码库,我们可以方便地构建和训练自己的目标检测模型,也可以使用预训练好的模型进行目标检测任务。 在使用这个代码库时,我们需要准备训练数据集,包括标注好的目标框和对应的类别标签。然后,可以使用提供的脚本进行数据预处理和数据增强,例如对图片进行裁剪、缩放、翻转等操作,以增加模型的鲁棒性。接下来,可以使用提供的训练脚本进行模型的训练,通过迭代优化模型参数,使模型在目标检测任务上达到更好的效果。 训练完成后,我们可以使用提供的推理脚本对测试集或新的图片进行目标检测。它会将检测到的目标框和对应的类别标签输出,以及它们的置信度分数。我们可以根据需要对输出进行后处理,例如进行非极大值抑制(NMS)来去除冗余的框。 总之,pytorch-yolov4-master是一个强大的目标检测算法的代码库,提供了丰富的功能和工具,便于我们进行YOLOv4模型的构建、训练和推理。它为目标检测任务的开发和研究提供了便捷的工具和基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值