HDU 5000

终于做完了5000题。。

just a  joke(再怎么做也不可能做到5000题,除非是五虎上将)

5000 是一道01背包。

提议一开始很难理解,但是一旦读明白了,就只差一个状态转移方程了。

首先,题目就是告诉你,一个完美集合的定义,叫你求出有多少完美集合。

完美集合的定义:

集合里面有数个小集合,小集合中都有N个属性,每一个属性都已经告诉你了。

当然,告诉你的是最大值,最小值是0.

所以每一个属性值徘徊在0~T[i]之间。

如果一个集合是完美集合,那么完美集合里面的所有子集合两两属性都不能满足: \forall x, \forall y ,\forall i| xT[i] >=yT[i] OR \forall x, \forall y ,\forall i| xT[i] <=yT[i]

转换一下思维模式:

这个所谓的完美集合到底是什么,

就拿题目的样例来说:

属性值:{8,6}

完美的集合:

{0,7},{1,6},{2,5},{3,4},{4,3},{5,2},{6,1}

 

请读者多举几个例子,就会发现,只要子集的属性值之和与所有属性最高值之和的一半相同,就是一个完美集合。

这与我之前学过的01背包十分相似,01背包将物品放入背包之中,具有两种决策方式,然后比较最大值。

在这里,就像从左上角到右下角走路统计路径一样,是一个加和的过程。

很多人的blog上面都写了一大堆代码,但很少有人具体解释这个状态转移方程是怎么来的。

首先,我们看状态转移方程:

dp[i][j]=dp[i][j]+dp[i-1][j-k]MOD (1e9+7)

1.i,j表示什么:i表示现在再放第几个数了,j表示现在属的容量最大可以是多少。

2.dp[i][j]又表示什么?dp[i][j]表示在放入第i个数时,数的容量是j时,完美集合的数目。

3.为什么这个状态转移方程的是要加的,在这个问题当中,当前的状态时由之前已经求出的状态得到的,因为我们在放第i个

物品时,我们由0~sum中决策,也就是有sum+1中决策,至于第i个数会不会超过或者小于sum,我们不关心,这要看下一个循环的k值:

Judge: if :j>=k(0<=k<=a[i])

为什么时 i-1, 为什么又是 j-k ,这与 "  + " 有关,我们为了求和(这道题的本意就是让我们求和),所以比较大小是没有意义的。

接下来,我们考虑求和的范围是什么,首先我们的容量扩张了(j),接下来,就要看我们之前在放dp[i-1][j-k]时的完美集合有多少个,然后,我们就能够放入k这个数目,而且又不会让总的容量超过sum,一举两得,实在是佩服     qaq

4.MOD 没什么好讲的,取模,看了看题目,发现,数据的范围不会出现超过2000的总和,所以精度不会爆。

5.完了

6.dp要附一个初始值,就是dp[0][0] = 1,它表示,即使没有一个物品,然后我的数容量是0,就正好只有一种一种情况。

CODE:

#include <iostream>
using namespace std;
typedef long long ll;
const int maxn = 2e3+10;
const int MOD = 1e9+7;
int t,n,a[maxn],dp[maxn][maxn],sum;
int main()
{
    cin>>t;
    while(t--)
    {
        cin>>n;
        sum=0;
        for(int i=1;i<=n;++i)
        {
            cin>>a[i];
            sum+=a[i];
        }
        sum>>=1;
        for(int i=0;i<=n;++i)
            for(int j=0;j<=sum;++j)
                dp[i][j]=0;
        dp[0][0]=1;
        for(int i=1;i<=n;++i)
            for(int j=0;j<=sum;++j)
                for(int k=0;k<=a[i];++k)
                    if(j>=k)
                        dp[i][j]=(dp[i][j]+dp[i-1][j-k])%MOD;
        /*for(int i=0;i<=n;++i)
        {
            for(int j=0;j<=sum;++j)
                cout<<dp[i][j]<<" ";
            cout<<endl;
        }*/
        cout<<dp[n][sum]<<endl;
    }
}
/*
3
1
5
2
8 6
4
2 8 6 10
*/

 

7-10 天梯赛的赛场安排分数 25 全屏浏览 切换布局 作者 陈越 单位 浙江大学 天梯赛使用 OMS 监考系统,需要将参赛队员安排到系统中的虚拟赛场里,并为每个赛场分配一位监考老师。每位监考老师需要联系自己赛场内队员对应的教练们,以便发放比赛账号。为了尽可能减少教练和监考的沟通负担,我们要求赛场的安排满足以下条件: 每位监考老师负责的赛场里,队员人数不得超过赛场规定容量 C; 每位教练需要联系的监考人数尽可能少 —— 这里假设每所参赛学校只有一位负责联系的教练,且每个赛场的监考老师都不相同。 为此我们设计了多轮次排座算法,按照尚未安排赛场的队员人数从大到小的顺序,每一轮对当前未安排的人数最多的学校进行处理。记当前待处理的学校未安排人数为 n: 如果 n≥C,则新开一个赛场,将 C 位队员安排进去。剩下的人继续按人数规模排队,等待下一轮处理; 如果 n<C,则寻找剩余空位数大于等于 n 的编号最小的赛场,将队员安排进去; 如果 n<C,且找不到任何非空的、剩余空位数大于等于 n 的赛场了,则新开一个赛场,将队员安排进去。 由于近年来天梯赛的参赛人数快速增长,2023年超过了 480 所学校 1.6 万人,所以我们必须写个程序来处理赛场安排问题。 输入格式: 输入第一行给出两个正整数 N 和 C,分别为参赛学校数量和每个赛场的规定容量,其中 0<N≤5000,10≤C≤50。随后 N 行,每行给出一个学校的缩写(为长度不超过 6 的非空小写英文字母串)和该校参赛人数(不超过 500 的正整数),其间以空格分隔。题目保证每所学校只有一条记录。 输出格式: 按照输入的顺序,对每一所参赛高校,在一行中输出学校缩写和该校需要联系的监考人数,其间以 1 空格分隔。 最后在一行中输出系统中应该开设多少个赛场。 输入样例: 10 30 zju 30 hdu 93 pku 39 hbu 42 sjtu 21 abdu 10 xjtu 36 nnu 15 hnu 168 hsnu 20 输出样例: zju 1 hdu 4 pku 2 hbu 2 sjtu 1 abdu 1 xjtu 2 nnu 1 hnu 6 hsnu 1 16
最新发布
03-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值