终于做完了5000题。。
just a joke(再怎么做也不可能做到5000题,除非是五虎上将)
5000 是一道01背包。
提议一开始很难理解,但是一旦读明白了,就只差一个状态转移方程了。
首先,题目就是告诉你,一个完美集合的定义,叫你求出有多少完美集合。
完美集合的定义:
集合里面有数个小集合,小集合中都有N个属性,每一个属性都已经告诉你了。
当然,告诉你的是最大值,最小值是0.
所以每一个属性值徘徊在0~T[i]之间。
如果一个集合是完美集合,那么完美集合里面的所有子集合两两属性都不能满足:
转换一下思维模式:
这个所谓的完美集合到底是什么,
就拿题目的样例来说:
属性值:{8,6}
完美的集合:
{0,7},{1,6},{2,5},{3,4},{4,3},{5,2},{6,1}
请读者多举几个例子,就会发现,只要子集的属性值之和与所有属性最高值之和的一半相同,就是一个完美集合。
这与我之前学过的01背包十分相似,01背包将物品放入背包之中,具有两种决策方式,然后比较最大值。
在这里,就像从左上角到右下角走路统计路径一样,是一个加和的过程。
很多人的blog上面都写了一大堆代码,但很少有人具体解释这个状态转移方程是怎么来的。
首先,我们看状态转移方程:
1.i,j表示什么:i表示现在再放第几个数了,j表示现在属的容量最大可以是多少。
2.dp[i][j]又表示什么?dp[i][j]表示在放入第i个数时,数的容量是j时,完美集合的数目。
3.为什么这个状态转移方程的是要加的,在这个问题当中,当前的状态时由之前已经求出的状态得到的,因为我们在放第i个
物品时,我们由0~sum中决策,也就是有中决策,至于第i个数会不会超过或者小于sum,我们不关心,这要看下一个循环的k值:
为什么时 i-1, 为什么又是 j-k ,这与 " + " 有关,我们为了求和(这道题的本意就是让我们求和),所以比较大小是没有意义的。
接下来,我们考虑求和的范围是什么,首先我们的容量扩张了(j),接下来,就要看我们之前在放dp[i-1][j-k]时的完美集合有多少个,然后,我们就能够放入k这个数目,而且又不会让总的容量超过sum,一举两得,实在是佩服 qaq
4.MOD 没什么好讲的,取模,看了看题目,发现,数据的范围不会出现超过2000的总和,所以精度不会爆。
5.完了
6.dp要附一个初始值,就是,它表示,即使没有一个物品,然后我的数容量是0,就正好只有一种一种情况。
CODE:
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn = 2e3+10;
const int MOD = 1e9+7;
int t,n,a[maxn],dp[maxn][maxn],sum;
int main()
{
cin>>t;
while(t--)
{
cin>>n;
sum=0;
for(int i=1;i<=n;++i)
{
cin>>a[i];
sum+=a[i];
}
sum>>=1;
for(int i=0;i<=n;++i)
for(int j=0;j<=sum;++j)
dp[i][j]=0;
dp[0][0]=1;
for(int i=1;i<=n;++i)
for(int j=0;j<=sum;++j)
for(int k=0;k<=a[i];++k)
if(j>=k)
dp[i][j]=(dp[i][j]+dp[i-1][j-k])%MOD;
/*for(int i=0;i<=n;++i)
{
for(int j=0;j<=sum;++j)
cout<<dp[i][j]<<" ";
cout<<endl;
}*/
cout<<dp[n][sum]<<endl;
}
}
/*
3
1
5
2
8 6
4
2 8 6 10
*/