from sklearn import datasets, cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
def evaluate(y_test, pred, method):
acc = metrics.accuracy_score(y_test, pred)
f1 = metrics.f1_score(y_test, pred)
auc = metrics.roc_auc_score(y_test, pred)
print(method + ":")
print("\nacc: ")
print(acc)
print("\nf1: ")
print(f1)
print("\nauc: ")
print(auc)
print("\n")
dataset = datasets.make_classification(n_samples=1000,
n_features=10,n_informative=2,
n_redundant=2, n_repeated=0, n_classes=2)
kf = cross_validation.KFold(1000, n_folds=10, shuffle=True)
for train_index, test_index in kf:
X_train, y_train = dataset[0][train_index], dataset[1][train_index]
X_test, y_test = dataset[0][test_index], dataset[1][test_index]
clf = GaussianNB()
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
evaluate(y_test,pred,"naive_bayes")
C_values = [1e-02, 1e-01, 1e00, 1e01, 1e02]
for C_value in C_values:
clf = SVC(C=C_value, kernel='rbf', gamma=0.1)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
evaluate(y_test,pred,"SVC, C_value= %s" % str(C_value))
clf = RandomForestClassifier(n_estimators = 6)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
evaluate(y_test,pred,"RandomForestClassifier")
【高级编程技术】第15周作业
最新推荐文章于 2018-06-20 14:40:57 发布