[UOJ#310]-黎明前的巧克力-FWT的可加性

15人阅读 评论(1) 收藏 举报
分类:

说在前面

并没有什么想说的,但是要保持格式=w=


题目

UOJ#310传送门

题目大意

给出N个数字,N不超过1e6,数字大小不超过1e6
从中选出两个不相交的集合,使得这两个集合异或和相等,不要求把所有数全部选到,问方案数

输入输出格式

输入格式:
第一行一个整数N,含义如题
接下来一行N个整数,描述这一堆数字

输出格式:
输出方案数在模998244353意义下的值


解法

首先可以想到一个最暴力的dp,就是定义dp[i][j][k]表示,前i个数里面,一个集合异或和为j,另一个集合异或和为k的方案数。转移是显然的,然而复杂度高的令人窒息…

然后可以发现,最后两维并没有什么卵用。因为,如果能选出一个子集,这个子集的异或和为0,那么把这个子集分成两部分,这两部分的异或和一定相等。于是可以把状态减小一维:定义dp[i][j]表示,前i个数里面,选出两个不相交集合异或和为j的方案数。转移是显然的:dp[i][j]=dp[i1][j]+dp[i1][ja[i]]2(乘2是因为有两个集合),最后答案就是dp[N][0]。然后这个复杂度仍然过不去

然后发现,这个转移是一个异或卷积的形式,与之相卷的数组假设是b[],那么b[0] = 1,b[ a[i] ] = 2。那么每一层转移,相当于卷上这么一个数组b(每一层转移对应一个b,这些b不一定相同)。
观察一下这个b的特点,发现b的正变换要么是1,要么是-3(因为0位置会对所有位置贡献1,而a[i]位置会对所有位置贡献2或者-2。不理解的,去复习异或卷积的正变换)。
那么如果能快速的知道,这一位在所有转移中乘上了多少个-1,多少个3,就可以直接快速幂,然后逆变换得出答案了

假设我们把所有正变换之后的数组加起来,某一位上的数字是S,那么可以列出方程:3xy=Sx+y=N,解出来就好了。那么,所有正变换的数组加起来,实际上就是所有数组加起来的正变换(因为FWT可加)

所以这道题就被解决了


下面是自带大常数的代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

const int P = 998244353 , inv2 = 499122177 ;
int N , remN , cnt[2000005] , maxv , mi3[1000005] ;

void FWT( int *a , int lf , int rg , bool inver ){
    int siz = ( rg - lf + 1 ) / 2 , t0 , t1 ;
    if( !siz ) return ;
    FWT( a , lf , lf + siz - 1 , inver ) ;
    FWT( a , rg - siz + 1 , rg , inver ) ;
    for( int i = lf + siz - 1 ; i >= lf ; i -- ){
        t0 = a[i] , t1 = a[i+siz] ;
        if( inver ){
            a[i] = 1LL * ( t0 + t1 ) * inv2 %P ;
            a[i+siz] = 1LL * ( t0 - t1 ) * inv2 %P ;
        } else a[i] = ( t0 + t1 )%P , a[i+siz] = ( t0 - t1 )%P ;
    }
}

void solve(){
    for( N = 1 ; N <= maxv ; N <<= 1 ) ;
    FWT( cnt , 0 , N - 1 , 0 ) ;

    mi3[0] = 1 ;
    for( int i = 1 ; i <= remN ; i ++ ) mi3[i] = 3LL * mi3[i-1] %P ;

    for( int i = 0 , x ; i < N ; i ++ ){
        // 3x - y = cnt[i] && x + y = remN
        // 4x - remN = cnt[i] ===> x = ( cnt[i] + remN ) / 4 ;
        x = ( cnt[i] + remN ) / 4 ;
        cnt[i] = (remN-x)&1 ? -mi3[x] : mi3[x] ;
    } FWT( cnt , 0 , N - 1 , 1 ) ;
    printf( "%d" , ( cnt[0] + P - 1 )%P ) ;
}

int main(){
    scanf( "%d" , &N ) , remN = N ;
    for( int i = 0 , x ; i < N ; i ++ ){
        scanf( "%d" , &x ) ;
        cnt[x] += 2 ; maxv = max( maxv , x ) ;
    } cnt[0] += N ; solve() ;
}
查看评论

[FWT] UOJ #310. 【UNR #2】黎明前的巧克力

这是若干个 2xai+12x^{a_i}+1 的东西的卷积 然后这个FWT一下发现每一项只有 −1-1 或 33 那么卷积的FWT每一项就是若干个 −1-1 和 33 的乘积 这个不好求 直接...
  • u014609452
  • u014609452
  • 2017-07-24 09:59:50
  • 441

uoj #310. 【UNR #2】黎明前的巧克力 FWT

题意 给出n个数a[1..n],要求从其中选出两个子集,要求这两个子集至少有一个不为空集且交集为空,并且它们的异或和相等。 n,a[i]&amp;lt;=1000000 分析 注意到两个子...
  • qq_33229466
  • qq_33229466
  • 2018-03-02 20:45:12
  • 75

[FWT][DP] UOJ #310. 【UNR #2】黎明前的巧克力

SolutionSolution DP很好想。 设ii个巧克力的集合幂级数fif_i,其中fi,0=1,fi,ai=2f_{i,0}=1,f_{i,a_i}=2。 答案就是这一堆东西对称差卷积起...
  • Vectorxj
  • Vectorxj
  • 2018-01-17 10:12:46
  • 108

定积分的基本性质5 区间可加性

定积分的基本性质5 区间可加性
  • phoenix198425
  • phoenix198425
  • 2017-12-11 21:33:58
  • 718

方差的可加性的证明

  • 2013年04月29日 10:39
  • 22KB
  • 下载

Gamma 分布函数可加性证明

机器学习里很重要的一个分布是Gamma分布,但Gamma分布的可加性推倒比较复杂,先提供手稿如下:...
  • u012279165
  • u012279165
  • 2017-06-24 18:07:41
  • 573

期望的一个性质---可加性

想写这篇文章的一个动力是这道题: http://acm.hdu.edu.cn/showproblem.php?pid=5194 这是BestCoder35比赛的第一题。想了半天只会暴力方法。附上原题...
  • grooowing
  • grooowing
  • 2015-04-11 22:40:16
  • 2267

[DP] UOJ #311. 【UNR #2】积劳成疾

fi,jf_{i,j}表示长为 ii 的区间 最大值是jj 的答案 转移就枚举最左边的最大值在区间的位置 前缀和优化下就好了好像也可以fi,j,kf_{i,j,k}表示前 ii 个,末尾 KK 个中...
  • u014609452
  • u014609452
  • 2017-07-23 14:10:32
  • 329

[FWT] UOJ#310. 【UNR #2】黎明前的巧克力

题意 题解好题。 先把题目要求的稍微转换一下,可以发现若我们找到一个异或和为00的集合SS,则 2|S|2^{|S|} 种把 SS 分成两半的方案都是可行的方案。 所以我们考虑 DPDP : f...
  • CHHNZ
  • CHHNZ
  • 2017-07-22 12:48:36
  • 252

HAWQ取代传统数仓实践(十七)——事实表技术之累积度量

累积度量指的是聚合从序列内第一个元素到当前元素的数据,例如统计从每年的一月到当前月份的累积销售额。本篇说明如何在销售订单示例中实现累积月销售数量和金额,并对数据仓库模式、初始装载、定期装载做相应地修改...
  • wzy0623
  • wzy0623
  • 2017-06-09 18:38:13
  • 2404
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 2万+
    积分: 2157
    排名: 2万+
    博客专栏