[UOJ#310]-黎明前的巧克力-FWT的可加性

说在前面

并没有什么想说的,但是要保持格式=w=


题目

UOJ#310传送门

题目大意

给出N个数字,N不超过1e6,数字大小不超过1e6
从中选出两个不相交的集合,使得这两个集合异或和相等,不要求把所有数全部选到,问方案数

输入输出格式

输入格式:
第一行一个整数N,含义如题
接下来一行N个整数,描述这一堆数字

输出格式:
输出方案数在模998244353意义下的值


解法

首先可以想到一个最暴力的dp,就是定义dp[i][j][k]表示,前i个数里面,一个集合异或和为j,另一个集合异或和为k的方案数。转移是显然的,然而复杂度高的令人窒息…

然后可以发现,最后两维并没有什么卵用。因为,如果能选出一个子集,这个子集的异或和为0,那么把这个子集分成两部分,这两部分的异或和一定相等。于是可以把状态减小一维:定义dp[i][j]表示,前i个数里面,选出两个不相交集合异或和为j的方案数。转移是显然的: dp[i][j]=dp[i1][j]+dp[i1][ja[i]]2 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i − 1 ] [ j ⊕ a [ i ] ] ∗ 2 (乘2是因为有两个集合),最后答案就是dp[N][0]。然后这个复杂度仍然过不去

然后发现,这个转移是一个异或卷积的形式,与之相卷的数组假设是b[],那么b[0] = 1,b[ a[i] ] = 2。那么每一层转移,相当于卷上这么一个数组b(每一层转移对应一个b,这些b不一定相同)。
观察一下这个b的特点,发现b的正变换要么是1,要么是-3(因为0位置会对所有位置贡献1,而a[i]位置会对所有位置贡献2或者-2。不理解的,去复习异或卷积的正变换)。
那么如果能快速的知道,这一位在所有转移中乘上了多少个-1,多少个3,就可以直接快速幂,然后逆变换得出答案了

假设我们把所有正变换之后的数组加起来,某一位上的数字是S,那么可以列出方程: 3xy=S 3 x − y = S x+y=N x + y = N ,解出来就好了。那么,所有正变换的数组加起来,实际上就是所有数组加起来的正变换(因为FWT可加)

所以这道题就被解决了


下面是自带大常数的代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

const int P = 998244353 , inv2 = 499122177 ;
int N , remN , cnt[2000005] , maxv , mi3[1000005] ;

void FWT( int *a , int lf , int rg , bool inver ){
    int siz = ( rg - lf + 1 ) / 2 , t0 , t1 ;
    if( !siz ) return ;
    FWT( a , lf , lf + siz - 1 , inver ) ;
    FWT( a , rg - siz + 1 , rg , inver ) ;
    for( int i = lf + siz - 1 ; i >= lf ; i -- ){
        t0 = a[i] , t1 = a[i+siz] ;
        if( inver ){
            a[i] = 1LL * ( t0 + t1 ) * inv2 %P ;
            a[i+siz] = 1LL * ( t0 - t1 ) * inv2 %P ;
        } else a[i] = ( t0 + t1 )%P , a[i+siz] = ( t0 - t1 )%P ;
    }
}

void solve(){
    for( N = 1 ; N <= maxv ; N <<= 1 ) ;
    FWT( cnt , 0 , N - 1 , 0 ) ;

    mi3[0] = 1 ;
    for( int i = 1 ; i <= remN ; i ++ ) mi3[i] = 3LL * mi3[i-1] %P ;

    for( int i = 0 , x ; i < N ; i ++ ){
        // 3x - y = cnt[i] && x + y = remN
        // 4x - remN = cnt[i] ===> x = ( cnt[i] + remN ) / 4 ;
        x = ( cnt[i] + remN ) / 4 ;
        cnt[i] = (remN-x)&1 ? -mi3[x] : mi3[x] ;
    } FWT( cnt , 0 , N - 1 , 1 ) ;
    printf( "%d" , ( cnt[0] + P - 1 )%P ) ;
}

int main(){
    scanf( "%d" , &N ) , remN = N ;
    for( int i = 0 , x ; i < N ; i ++ ){
        scanf( "%d" , &x ) ;
        cnt[x] += 2 ; maxv = max( maxv , x ) ;
    } cnt[0] += N ; solve() ;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值