- 博客(16)
- 收藏
- 关注
原创 【产品-用户反馈-大众点评】
【产品-用户反馈-大众点评】概述介绍用户反馈基本方法论大众点评用户反馈实例用户反馈基本方法3种渠道:公开(微博,贴吧、应用商店)、半公开(朋友圈)、内部(投诉,电话录音)2点用途:功能改进点+可能的机会点(eg:“赶集招标”)筛选方式:低分差评+有效评论+异常行为+竞品变化大众点评用户反馈实例反馈来源-小米手机应用市场 10-12月典型反馈“这个版本打不了卡,好麻烦” V10.38.4 20201211 8“贡献值取消不再显示之后、每个进度条、是不是我啥时候升级,全看你大众的心
2020-12-19 22:31:00 2538 1
原创 【报错记录】GraphViz‘s executables not found
使用决策树可视化时遇到的报错。1、首先安装两个包pip install pydotpluspip install graphviz通过pip安装graphviz模块后,进行sklearn的决策树文档操作输出决策树模型结果时报错,报错内容为:GraphViz’s executables not found。通过了解得知:graphviz是属于一个独立的软件,需要到官网下载安装包解压,将bin文件夹添加到Path环境变量。但是官网好像链接有点问题,这里贴上我找到的安装包2、安装配置安装完成后,
2020-08-19 16:34:28 306
原创 【python 数据分析】练习6:决策树+神经网络—用户相亲成功可能性的预测模型
数据集及源码https://github.com/JCATHoney/python-data-analysis一、问题描述一家婚恋网站公司希望根据已注册用户的历史相亲数据,建立新用户相亲成功可能性的预测模型,数据存放在“date_data2.csv”中。二、数据集#income-月均收入(元)#attractive-由婚恋网站评定出的个人魅力值,分值从0-100。#assets-资产(万元)#edueduclass-教育等级:1=小学,2=初中;3=高中,4=本科,5=硕士及以上#
2020-08-13 11:51:16 1747
原创 【python数据分析】练习5:逻辑回归—客户流失模型构建
数据集及源码https://github.com/JCATHoney/python-data-analysis一、问题描述电信公司希望针对客户的信息预测其流失可能性分析思路:在对客户流失与否的影响因素进行模型研究之前,首先对各解释变量与被解释变量进行两变量独立性分析,以初步判断影响流失的因素,进而建立客户流失预测模型二、数据集主要变量说明如下:#subscriberID="个人客户的ID"#churn="是否流失:1=流失";#Age="年龄"#incomeCode="用户居住区域平均收
2020-08-11 11:46:04 1483
原创 【python数据分析】练习4:线性回归—二手房价预测
数据集及源码https://github.com/JCATHoney/python-data-analysis一、问题描述在对房价的影响因素进行模型研究之前,首先对各变量进行描述性分析,以初步判断房价的影响因素,进而建立房价预测模型总体步骤如下:(一) 因变量分析:单位面积房价分析(二) 自变量分析:2.1 自变量自身分布分析2.2 自变量对因变量影响分析(三)建立房价预测模型3.1 线性回归模型3.2 对因变量取对数的线性模型3.3 考虑交互项的对数线性(四)预测: 假设有一家
2020-08-07 11:29:56 4588 2
原创 【python数据分析】练习3:描述性统计-信用卡客户画像
数据集及源码https://github.com/JCATHoney/python-data-analysis一、问题描述1、不同类型卡的持卡人(type=所有者)的性别对比2、不同类型卡的持卡人在办卡时的平均年龄对比3、不同类型卡的持卡人在办卡前一年内的平均帐户余额对比4、不同类型卡的持卡人在办卡前一年内的平均收入对比二、数据集描述:本数据为一家银行的个人金融业务数据集,可以作为银行场景下进行个人客户业务分析和数据挖掘的示例。这份数据中涉及到5300个银行客户的100万笔的交易,而且涉及70
2020-08-05 23:19:54 2071
原创 【python数据分析】练习2-描述性统计-保险用户画像
数据集和源码:https://github.com/JCATHoney/python-data-analysis问题描述描述性统计使用auto_ins作如下分析1、首先对loss重新编码为1/0,有数值为1,命名为loss_flag(哑变量)2、对loss_flag分布情况进行描述分析3、分析是否出险和年龄、驾龄、性别、婚姻状态等变量之间的关系(提示:使用分类盒须图,堆叠柱形图)数据格式只有一张表,auto_ins1、使用auto_ins作如下分析,首先对loss重新编码为1/0,有数值为
2020-08-05 22:03:20 2147
原创 数据科学体系概述
整体思维导图如下:关键点展开说明1、根据变量类型统计分析Statemodels 统计分析2、描述性统计分类a. 单一分类变量:统计频次 图形:条形图,饼图b. 两个分类变量表分析:统计频次 图形:堆叠条形图c.单连续变量(分类汇总):直方图d. 两个分类标量汇总表:直方图3、排序模型的评估指标ROC曲线:描述模型分辨能力,对角线以上的图形越高模型越好K-S曲线:用来描述模型对违约客户的分辨能力累积提升曲线:由于展示使用模型预测结果与随机情况下获叏显性样本的 能
2020-08-03 17:59:30 756
原创 【python数据分析】—练习01商铺数据清洗
【项目01】 商铺数据加载及存储作业要求:1、成功读取“商铺数据.csv”文件2、解析数据,存成列表字典格式:[{‘var1’:value1,‘var2’:value2,‘var3’:values,…},…,{}]3、数据清洗:① comment,price两个字段清洗成数字② 清除字段缺失的数据③ commentlist拆分成三个字段,并且清洗成数字4、结果存为.pkl文件源数据格式1、读取数据# 设置路径,方式,编码f=open('C:/Users/Away/Desktop/
2020-07-10 23:32:45 3652 2
原创 Tableau凹凸图,雷达图练习
第13课作业1、使用超市数据,制作不同装运年份不同子类别装运成本的凹凸图,以为装运年份为横坐标,子类别按照装运成本排序生成凹凸图;2、使用“业绩指标衡量”数据,制作雷达图,查看员工A、B、C三人的各项指标数据,从已建立好的雷达图中,通过筛选保留员工A和C的雷达图数据,导出图像;注意点首先处理数据生成数据透视表然后是4个计算字段的创建路径 `CASE [指标名称]WHEN '指标A' THEN 1WHEN '指标B' THEN 2WHEN '指标C' THEN 3WHEN '指标D
2020-07-07 11:10:49 949
原创 Tableau参考范围/线图,倾斜图,网络关系图练习
第11课作业1、使用坐席接听数据,制作呼入通话时长的***范围-线图***,横坐标显示日期数值,纵坐标为呼入通话dd长,范围要求显示最大值,最小值和平均值,筛选出工号为20002875员工,分析说明,导出图像。(分析说明:该员工的呼入通话时长基本都在平均值偏上,距离最大呼入通话时长相对较远。)2、使用“各省售量数据” 制作各省售电量当期值与同期值变化情况的***倾斜图,***需要在便签中显示出排名、省份、累计值,其中累计值以M作为单位显示格式,分析数据,导出图像。1、创建计算字段,排名-index
2020-07-04 20:28:45 1447 1
原创 Tableau旋风图,漏斗图,双线图,盒须图练习
作业9使用“人工坐席接听数据“完成题目:1、通过创建计算字段,创建“服务评价满意率”与“人工服务接听量”数据散点图,并将“服务评价满意率”小于95%的定义为不满意,高亮显示(提示:橙色和蓝色)不满意数据,导出图像;2、创建“N日移动平均参数”,日期最大值为31,创建“N天移动平均接听量“的计算字段,创建双线图(提示:折线图双轴),以日期为横坐标,接听量为纵坐标,同时展示N日移动平均量和每天人工服务接听量,并将5天为时间跨度的移动平均量导出图像;作业101、使用“豆瓣电影数据”,创建中美两国不同
2020-07-03 17:38:04 3922 3
原创 Tableau地图/分组数据集联系
第7次课作业:1、使用“蒙东地理数据”创建多边形地图,以注释的方式显示每个市的名称,导出图像;第一步:将经纬度别放到度量第二步:标记选择多边形第三步:分析-取消度量第四步:颜色设置为地市第五步:多边形地图无法设置标签,通过添注释显示名称2、使用“2014年各省市售电量”数据,以服务器地图“M Pencil”为背景,将当期值设为大小,显示省份标签,创建符号地图,导出图像。3、根据提供的五岳位置信息,导入自定义位置编码,使用“五月测试”数据,创建五岳的符号地图,显示标签,导出图像。创建五岳
2020-07-02 19:04:20 2136
原创 Tableau制作全球电影数据分析/全球超市利润混合地图
作业5:1、创建产地电影数量与评分(以此命名)的符号地图,处理未知位置信息,以颜色表示评分平均值,选择红绿发散,以电影数量表示圆形大小,显示产地标签,对数据进行分析。2、使用智能显示制作连续面积图,命名为电影数量变化,以年代为横轴,电影数量为纵轴,显示标签;注意点标记选择为区域3、插入自定义形状,通过智能显示,绘制各产地电影数量的圆视图,将形状替换为自定义形状,横将圆视图转为向,以记录数填充颜色,选择红绿,调整视图大小。自定义形状文件夹:打开软件所在位置—回退一级目录—defaults-sha
2020-07-01 18:04:18 3912 1
原创 Tableau制作全球超市利润瀑布图/国家电影产量标靶图
Tableau制作全球超市利润瀑布图/国家电影产量标靶图tableau作业4:使用“豆瓣电影数据.xlsx”和“全球超市订单数据.xlsx”文件,完成以下作业;1、制作“2012年各国家电影产量”标靶图,上映时间为2012年,添加参考线和参考分布,参考线为常量——200,参考线颜色为黑色加粗,不显示标签;参考分布选择总量平均值百分比的50%和100%,参考分布线选择橙色加粗,中间为浅灰色,显示标签为计算;2、使用超市数据制作瀑布图,要求分析拉丁美洲市场各个国家的利润情况,排除零值,将累计利润为负的
2020-06-30 22:52:29 3802 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人