手把手教你入门绘图超强的AI绘画,用户只需要输入一段图片的文字描述,即可生成精美的绘画。给大家带来了全新保姆级教程资料包 (文末可获取)
Stable Diffusion 超详细讲解
这篇文章是 《Stable Diffusion原理详解》的后续,在《Stable Diffusion原理详解》中我更多的是以全局视角讲解了 Stable Diffusion 的原理和工作流程,并未深入步骤细节。本文将在《Stable Diffusion原理详解》和《Diffusion Model 深入剖析》这两篇文章的基础上,进一步细致地讲解 Stable Diffusion 的算法原理。

文章目录
-
- Diffusion Model
-
- Diffusion Model 概览
- 正向扩散过程
- 逆向扩散过程
- 训练
- 采样
- 扩散速度问题
- Stable Diffusion
-
- 潜在空间
- Latent Diffusion
- 调节机制
- 训练
- 采样
- 架构对比
-
- 纯扩散模型
- Stable Diffusion (潜在扩散模型)
- 总结
Diffusion Model
Stable Diffusion 脱胎于 Diffusion 模型。因此在搞懂 Stable Diffusion 之前,先搞懂 Diffusion Model 模型非常有必要。这一部分我会带大家大致过一遍 Diffusion Model。如果你想了解 Diffusion Model 的全部细节,可以阅读我之前的文章:《Diffusion Model 深入剖析》。
Diffusion Model 概览

图1. 扩散模型原理概要
Diffusion Model的训练可以分为两部分:
- 正向扩散过程 → 为图像添加噪声。
- 反向扩散过程 → 去除图像中的噪声。
正向扩散过程
正向扩散过程将高斯噪声逐步添加到输入图像中。我们使用以下闭合公式(推导过程详见
本文详细介绍了Stable Diffusion模型,包括Diffusion Model的基础概念、正向和逆向扩散过程、训练与采样,以及与纯扩散模型的对比。Stable Diffusion在潜在空间进行运算,提高了效率,支持文本等条件输入,适用于AI绘画领域。
最低0.47元/天 解锁文章
1202

被折叠的 条评论
为什么被折叠?



