Stable Diffusion教程|一篇讲透Controlnet实用高阶组合用法

本文将教会你,如何利用多个controlnet组合以及一些最新的SD插件,来精准的控制画面,生成角色三视图、光源和颜色控制、替换背景,控制手脚完美生成等极具实用性的高级技巧,更多内容详见目录。

研究了不同的controlnet组合和参数调整,踩了无数的坑,总结了本篇,只要肯学,就一定给你带来意想不到的收获!

目录

1 单个controlnet配合插件的高级用法

_1._1 角色三视图生产

1.2 精准控制光源

1.3 颜色控制画面
1.4 一键换背景
1.5 更精准的图生图控制

2 多个controlnet的组合用法

__2.1 控制手脚完美生成

2.2 人物和背景分别控制生成

__2.3 风格融合

2.4 分块控制

3 其他相关插件的用法

3.1 生成多人画面更精准分块控制

**一、**单个controlnet配合插件的高级用法

1角色三视图生产

Step1 找一张openpose的三视图

下载我这张即可:

Step2 选择controlnet模型和参数配置

在这里插入图片描述

Step3 输入咒语提示词+三视图Lora模型

高质量
最好的质量,杰作best quality,masterpiece
人物
男/女,发型,衣服
1 girl,Braids, dresses
三视图关键词
单人,(简单背景,白色背景:1.3),多个视图solo,(simple background,white background:1.3),multiple views

提示词1:

best quality,masterpiece,1 girl,Braids, dresses,solo,(simple background,white background:1.3),multiple views

提示词2:

masterpiece, best quality, mecha, no humans, black armor, blue eyes, science fiction, fire, laser canon beam, war, conflict, simple background, (white background:1.2)

Lora模型:

在这里插入图片描述

模型名称:CharTurnerBeta

下载地址:2选1

https://civitai.com/models/7252/charturnerbeta-lora-experimental

https://www.liblib.art/modelinfo/dd506630e75364658286220cce8a554d

lora权重:0.3左右,选择高清修复重绘0.5:

在这里插入图片描述

效果展示:

在这里插入图片描述

在这里插入图片描述

**2精准控制光源
**

Step1 先用SD画一张图片

在这里插入图片描述

Step2 找一些光源图素材

****如下:


在这里插入图片描述

在这里插入图片描述

step3 通过图生图+controlnet-depth 组合

在这里插入图片描述

生成对应对应光源风格的图片:

**加粗样式
**

在这里插入图片描述

Tips:图生图的时候,controlnet里面的图需要SD生成的,并且提示词和其他参数,包括种子数,需要和原图保持一致。

**3颜色控制画面
**

主要通过contentnet-segmentation语义分割模型来实现。

step1 不同颜色对应不同的类型

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

step2 设置segmentation模型

****1 随便找一张风景素材图上传到controlnet


2 模型选择:为了提高准确性,建议使用 seg_ofade20k 和 seg_ofcoco 而不是 seg_ufade20k。

3 点击大爆炸,语义分割

4 可以看到,深蓝色区域-海水,土黄色区域-沙滩,天蓝色区域-天空,参考上文的颜色图表。(你当然也可以自己用PS用不同色块画出来,涂鸦都行)

在这里插入图片描述

step3 精准生成图片或修改局部内容

在这里插入图片描述

****提示词:****best quality,masterpiece,blue sky,baiyun,ocean,white beach,green tree,

生成图片:

在这里插入图片描述

在这里插入图片描述

涂鸦一条船生成图片:

在这里插入图片描述

提示词:best quality,masterpiece,blue sky,baiyun,ocean,white beach,green tree,a boat,

无需预处理:

在这里插入图片描述

这样就指定的位置多了一条船,风格不变:

在这里插入图片描述

**4一键换背景
**

step1 图生图模型,保持原图的所有参数,只在提示词里面替换或新增目标背景的描述。

提示词:

best quality,masterpiece,1girl,half-body photo,future clothing,future style of technology,grassland background,

在这里插入图片描述

step2 启用controlnet-depth ,无需传图,选择depth_leres++预处理,参数Remove Background % =(50%~75%最佳)

在这里插入图片描述

step3 生成图片,效果如下:

在这里插入图片描述

由于替换了大模型风格和之前不同了,另外衣服颜色和头发也有所改变,如果只换背景,人物变化极小,那就需要 Reference。

step4 启动第二个controlnet,上传原图,并********使用Reference,配置如下图。

在这里插入图片描述

生成效果如下:

在这里插入图片描述

****二、****多个controlnet的组合用法

**1更精准的图生图控制
**

技巧是 canny+depth组合

step1 图生图模式,选一个照片切换风格

切换模型或添加风格提示词或添加lora:

在这里插入图片描述

step2 启用1controlnet-canny

在这里插入图片描述

step3 启用2controlnet-depth,生成图片

在这里插入图片描述

生成不同风格,但人物造型保持了一致。

在这里插入图片描述

2控制手脚完美生成

技巧是使用 openpose+canny+depth组合生成图片。

step1 启用1controlnet,选择openpose,控制人物脸部和姿态。

在这里插入图片描述

step2 通过插件制作手的深度图,下载图片

安装插件:深度图编辑器插件
下载地址:https://github.com/wywywywy/sd-webui-depth-lib.git

在这里插入图片描述

step3 启用2controlnet,选择canny,导入手的深度图

在这里插入图片描述

step4 启用2controlnet,选择depth,导入手的深度图

在这里插入图片描述

step5 输入关键词,生成图片

在这里插入图片描述

在这里插入图片描述

3人物和背景分别控制生成

技巧是使用。人物openpose+背景depth组合生成图片。

step1 启用1controlnet,选择openpose,控制人物脸部和姿态。

在这里插入图片描述

step2 启用2controlnet,选择depth**,选择背景图片。**

在这里插入图片描述

step3 输入提示词,生成图片。

在这里插入图片描述

在这里插入图片描述

**4风格融合
**

通过风格图片+主图线稿,生成各种风格的装修风格(有点像把一张图当成lora)

step1 模型下载,放在controlnet模型文件夹**:**

https://huggingface.co/TencentARC/T2I-Adapter/tree/main/models

在这里插入图片描述

step2 启用1controlnet,选择canny或者MLSD,导入装修线稿

在这里插入图片描述

在这里插入图片描述

step3 启用2controlnet,选T2I-Adapter,导入风格图片

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

step4 不用提示词,直接生成图片

在这里插入图片描述

普通线稿

在这里插入图片描述

无风格上色

在这里插入图片描述

梵高风格

在这里插入图片描述

宇宙风格

在这里插入图片描述

罗马风格

6分块控制

同两个canny组合一张图。

step1 启用1controlnet,选择canny,导入一只猫

在这里插入图片描述

step2 启用2controlnet,选择canny,导入一条狗

在这里插入图片描述

在这里插入图片描述

**三、**其他相关插件的用法

1生成多人画面更精准分块控制

技巧是通过 Latent couple、Composable LoRA、openpose插件,来控制人物数量、比例、不同人物的不同风格。

step1 两个插件的下载地址:

Latent couple:

https://github.com/opparco/stable-diffusion-webui-two-shot

Composable LoRA:

https://github.com/opparco/stable-diffusion-webui-composable-lora

step2 设置人物位置和比例

在这里插入图片描述

step3 多人提示词写法

在这里插入图片描述

step4 设置每个人的openpose,生成图片

****在这里插入图片描述


在这里插入图片描述

人物都没问题了,但手指存在问题,后续详细介绍手指的修复!

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

图片

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!

在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

这份完整版的AIGC全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述
Stable Diffusion WebUI ChilloutMix/ControlNet是一种稳定的网络用户界面,适用于ChilloutMix/ControlNet系统。该系统是一种用于控制和管理网络的解决方案。 Stable Diffusion WebUI ChilloutMix/ControlNet具有以下特点和功能。首先,它提供了直观和用户友好的界面,使用户能够轻松地操作和管理系统。该界面具有清晰的布局和易于理解的图形化界面,使用户可以快速找到所需的信息和功能。 其次,Stable Diffusion WebUI ChilloutMix/ControlNet具有高度稳定和可靠的性能。它能够处理大量的数据和信息,并在工作中保持稳定,从而确保系统的高效运行。 此外,该用户界面还提供了多种功能,包括远程监视和控制系统,实时数据显示和记录,警报和通知管理,以及系统配置和设置等。通过远程监视和控制功能,用户可以在任何地点实时监视和控制系统的状态和运行情况。同时,实时数据显示和记录功能可以提供关于系统运行的实时数据,帮助用户更好地了解系统的性能。 此外,该用户界面还提供警报和通知管理功能,以便及时通知用户系统的异常情况。用户可以配置所需的警报条件,并接收警报和通知消息,以便及时采取措施。 最后,通过Stable Diffusion WebUI ChilloutMix/ControlNet,用户可以对系统进行配置和设置,以满足特定的需求和要求。用户可以根据系统的工作要求进行参数配置,并进行必要的设置和调整,以确保系统的最佳性能。 总的来说,Stable Diffusion WebUI ChilloutMix/ControlNet是一款稳定可靠、功能丰富的网络用户界面,能够有效地管理和控制ChilloutMix/ControlNet系统。它提供了直观和易于使用的界面,具有多种功能,可以满足用户对系统控制和监视的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值