- 博客(6)
- 收藏
- 关注
原创 迭代扩展卡尔曼滤波(IEKF)
迭代扩展卡尔曼滤波(Iterative Extended Kalman Filter, IEKF)是一种改进的扩展卡尔曼滤波方法,主要用于处理非线性系统的状态估计问题。IEKF通过在每个时间步长内对滤波进行多次迭代,以改进状态估计的准确性。2、更强的稳定性:在一些情况下,IEKF能够提供比标准EKF更稳定的估计结果。1、更高的精度:通过多次迭代,IEKF能够更好地逼近非线性系统的真实状态。仿真结果如下:采用3个UWB为观测的匀速直线运动,代码以及结果如下所示。
2024-06-01 22:59:06
2189
原创 集中式观测融合EKF算法-圆形轨迹
集中式观测融合EKF(CMF-EKF)的思想是,由N个传感器对目标进行多方位观测,这些观测数据传入融合中心进行增广,最终得到融合估计。由于集中式观测融合是把所有传感器数据进行增广,因此融合结果具有全局最优性。
2024-04-23 18:33:59
390
原创 UWB+IMU利用扩展卡尔曼滤波
这种融合可以结合 UWB 的高精度定位能力和 IMU 的实时动态信息,提供更精确和可靠的定位解决方案。这些算法可以将 UWB 和 IMU 的测量数据结合起来,估计出更准确的位置和姿态信息。需要注意的是,UWB 和 IMU 融合的具体实现取决于应用场景、传感器的特性以及系统需求。这些数据包括 UWB 的位置测量和 IMU 的加速度计和陀螺仪输出。4. 状态估计:使用选定的融合算法对 UWB 和 IMU 的数据进行处理,以估计系统的状态,包括位置、速度和方向。图1 二维平面跟踪图。图二 4个状态MSE。
2024-03-21 20:04:32
1502
原创 扩展卡尔曼滤波
扩展卡尔曼滤波(Extended Kalman Filter,EKF)是卡尔曼滤波的一种扩展,用于非线性系统的状态估计。与标准卡尔曼滤波不同,EKF通过在线性化非线性系统模型和观测模型来处理非线性性质。下面给出二维平面匀速直线运动扩展卡尔曼滤波仿真。其中观测为三个距离的模型。
2024-03-17 20:43:33
363
原创 无迹卡尔曼滤波
无迹卡尔曼滤波(Unscented Kalman Filter,UKF)是卡尔曼滤波的一种扩展,它不需要对非线性函数进行线性化,而是通过选取一组称为sigma点的采样点来近似非线性函数的期望和协方差。下面给出UKF二维平面仿真。观测为单个雷达模型。
2024-03-17 20:33:10
470
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人