引言
为快速深刻的理解 DeepLabCut,本文按照官方给出的案例做相关的讲解,具体的实践步骤在文件 DeepLabCut/examples/Demo_labeledexample_MouseReaching.ipynb 给出,如有兴趣,可直接参考官方文档。图片是DeepLabCut 的整体流程结构。
本博客主要内容:
--绘制标记图像
--训练网络
--评估网络
--分析一个新的视频
--创建一个自动标记的视频
--绘制轨迹
--识别异常值框架
--手动注释异常值帧
--合并数据集并更新训练集
--训练网络
注意:此笔记本从已初始化的带有标记数据的项目开始。
开始操作:
(限于篇幅只讲解了流程,但没有对文件结构变化及相关的具体含义进行解释说明,有时间续写......)
# 激活环境
source activate deeplabcut-py36
# python 交互环境
python
导入相关库:
import deeplabcut
import tensorflow as tf
import os
from pathlib import Path
导入案例数据库:
加载数据前的文件结构

# 路径
path_config_file = os.path.join(os.getcwd(),'DeepLabCut-Felix/examples/Reaching-Mackenzie-2018-08-30/conf