Caffe
志小
假以时日
展开
-
Caffe框架整理
引言Caffe 全称Convolutional Architecture for Fast Feature Embedding,是一个计算 CNN 相关算法的框架,用C++ 和 Python实现的。Caffe 的优点与局限性:优点: 第一个主流的工业级深度学习工具; 专精于图像处理局限性:它有很多扩展,但是由于一些遗留的架构问题,不够灵活且对递归网络和语言建模的支持很差;基于层的网...原创 2019-04-08 17:24:57 · 850 阅读 · 0 评论 -
caffe 学习系列(3):配置 CAFFE 的 python 接口
参考链接参考链接原创 2019-04-15 15:10:35 · 202 阅读 · 0 评论 -
Caffe学习系列(2):计算图片数据的均值
引言图片减去均值后,再进行训练和测试,会提高速度和精度。因此,一般在各种模型中都会有这个操作。均值的计算实际上就是计算所有训练样本的平均值,计算出来后,保存为一个均值文件。在以后的测试中,就可以直接使用这个均值来相减,而不需要对测试图片重新计算。一、二进制格式的均值计算caffe 中使用的均值数据格式是 binaryproto,作者为我们提供了一个计算均值的文件 compute_ima...原创 2019-04-15 14:59:45 · 472 阅读 · 0 评论 -
Caffe 学习系列(11): caffemodel 中的参数及特征的抽取
引言如果用公式 y = f (wx + b) 来表示整个运算过程的话,那么 w 和 b 就是我们需要训练的东西, w 称为权值, 在 cnn 中也可以叫做卷积核(filter), b 是偏置项。 f 是激活函数, 有relu、sigmoid 等。 x 就是输入的数据。在数据训练完成后,保存的 caffemodel 里面实际上就是各层的 w 和 b 的值。我们运行代码:deploy...原创 2019-04-22 20:15:31 · 384 阅读 · 0 评论 -
Caffe 学习系列(10): 绘制 loss 和 accuracy 曲线
引言之所以使用 python 接口来运行 caffe 程序,其主要原因在于 python 非常容易可视化。所以推荐大家在 pycharm、jupyter notebook、spyder 等工具来运行 python 代码,这样才和它的可视化完美结合起来。同时便于读者的理解与学习。在 caffe 训练过程中,如果我们想知道某个阶段的 loss 值和 accuracy 值,并用图表画出来,用 p...原创 2019-04-22 19:51:05 · 1079 阅读 · 0 评论 -
Caffe 学习系列(9):用训练好的模型(caffemodel)来分类新的图片
引言经过前面的 Caffe 学习系列的博文,我们已经寻练好了一个 caffemodel 模型,并生成了一个 deploy.prototxt 文件,现在我们就利用这两个文件来对新的图片进行分类预测。从 mnist 数据集中的 test 集中随便找一张图片,来进行实验:#coding=utf-8import caffeimport numpy as nproot='/home/x...原创 2019-04-22 19:37:34 · 560 阅读 · 0 评论 -
Caffe 学习笔记(8): 生成 deploy 文件
引言如果要把训练好的模型拿来测试新的图片,那么必须要一个 depoly.prototxt 文件,这个文件实际上和 test.prototxt 文件差不多,只是头尾不相同而已。 deploy 文件没有第一层的数据输入层,也没有最后的 accuracy 层,但最后多一个 softmax 概率层。python代码生成 deploy 文件:(以 mnist 为例)from caffe imp...原创 2019-04-22 19:23:34 · 854 阅读 · 0 评论 -
Caffe 学习系列(7):mnist 图片数据实例
引言深度学习的第一个实例一般都是 mnist数据集,只要这个例子完全弄懂了,其他的就可以举一反三。由于篇幅问题,本文不介绍配置文件里面每一个参数的具体含义。如有需要参看之前的博文或者自行搜索学习。一、数据准备官网提供的 mnist 数据并不是图片,但是我们以后做的实际项目大多数都涉及到图片。在此提供一个百度云盘,里面存着mnist 图片数据。mnist图片数据下载链接数据分成了训练...原创 2019-04-22 18:02:20 · 366 阅读 · 0 评论 -
Caffe 学习系列(6):训练模型(training)
如果不进行可视化,只想的到一个最终的训练 model,代码很简单:import caffecaffe.set_device(0)caffe.set_mode_gpu()solver = caffe.SGDSolver('/home/xxx/data/solver.prototxt')solver.solve()...原创 2019-04-22 17:07:05 · 283 阅读 · 0 评论 -
Caffe 学习系列(5): 生成 solver 文件
引言Caffe 在训练的时候,需要设置一些参数,我们将这些参数设置在一个 solver.prototxt 的文件里面,如下:base_lr: 0.001display: 782gamma: 0.1lr_policy: “step”max_iter: 78200momentum: 0.9snapshot: 7820snapshot_prefix: “snapshot”sol...原创 2019-04-22 17:01:42 · 267 阅读 · 0 评论 -
Caffe学习系列(1):图像数据转换成db(leveldb/lmdb)文件
引言在深度学习的实际应用过程中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且图片的大小还可能不一致。而在 caffe 中经常使用的数据类型是 lmdb 或 leveldb,因此便产生一个问题:如何从原始图片文件转换成 caffe 中能够运行的 db (leveldb/lmdb)文件?在 caffe 中,作者为我们提供这样的一个文件: convert_i...原创 2019-04-13 18:00:55 · 387 阅读 · 0 评论 -
Caffe 学习系列(12):制作自己的 caffe 训练数据集
引言在学习和参加相关深度学习比赛的时候,一般情况下都是在准备好的情况下展开,而在实际的工作项目中。因为每一个公司的业务场景不同,需要我们自己去标记图片数据(参看深度学习标记工具汇总),并且在标记好的图片集中制作 caffe 框架的数据格式(lmdb文件),即本文所讲内容。制作自己的 caffe 训练数据集的整个过程分为:1. 准备自己的数据集;2. 生成 .txt 文件; 3.转化为 db...原创 2019-04-23 22:58:31 · 1200 阅读 · 0 评论