ArcGIS与ArcGIS Pro中的回归分析浅析(中)广义线性回归工具(GLR)使用

本文介绍了ArcGIS中广义线性回归工具(GLR)的使用,包括高斯、逻辑和泊松模型的选择,以及如何通过GLR分析911电话呼叫次数。内容涵盖GLR工具参数、运行结果解读、模型指标分析和残差验证,旨在理解GLR在地理数据分析中的应用。
摘要由CSDN通过智能技术生成

广义线性回归工具(GLR)使用

一、工具使用

在确定了解释变量之后就可以直接使用广义线性回归工具了。

GLR工具


来看一下工具的参数:

输入要素:ObsData911Calls面要素

因变量:这里我们选择要解释的变量,也就是Y值为calls,911电话呼叫次数

模型类型:高斯、逻辑以及泊松模型。

其中高斯模型是指因变量是连续的,例如温度、销售额、死亡率等等。

使用高斯模型时,理想情况下,数据服从正态分布遵循漂亮的钟形曲线,(大部分的数据都是服从正态分布的)可以针对因变量创建直方图,以验证它是否为正态分布的。

高斯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sky J

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值