【2023地理设计组一等奖】基于机器学习的地下水仿真与时空分析

该作品运用机器学习算法对河北省2018-2021年地下水位进行仿真建模,研究地下水时空模式。通过随机森林等方法,提升插值模型精度,分析气候变化、灌溉等因素对地下水的影响。作品构建了地下水数字孪生三维模型,为政策制定者提供决策支持,关注地下水漏斗区变化,以推动水资源可持续管理。
摘要由CSDN通过智能技术生成

作品介绍

1 设计思想

1.1 作品背景

华北平原是我国最重要的粮棉产地之一,然而近年来农业的低效用水以及过度压采正逐步加剧其地下水资源的紧张性,为经济可持续发展带来重大风险。而地下水动态变化与人为干预、全球气候波动呈现出高度相关性,因此,地下水的仿真模拟对保障粮食供应和推动水资源的可持续管理至关重要。

目前学界尽管有大量的文献探讨地下水的时空分布及可持续性发展,但与现实需求相比,其在空间分辨率和多因子影响的分析上仍具有很强的局限性。传统地统计方法如克里金插值用于地下水模拟和预测,缺少对多因子(气候变化、灌溉情境)影响下的地下水水文的分析,定量评估十分有限。

本作品基于ArcGIS Pro等平台和机器学习算法,结合地质、气象等影响因素对河北省2018-2021年地下水位进行仿真建模,构建时空变化场景,探究不同因子对地下水的敏感性分析;同时根据同的建模结果构建时空立方体,总结探讨其时空演变规律,并进行不同情景下地下水位的预测与模拟,为政策制定者提供能够适应气候变化的地下水灌溉管理策略。

1.2 方法设计

如图的技术路线所示,设计流程总体上可概括为数据获取、模型敏感性分析与特征挖掘、地下水时空模式分析与漏斗区研究四部分,最终在应用层面实现气象多情景决策模拟与地下水时空规律总结。

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sky J

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值