泊松回归和地理加权泊松回归

 01

泊松回归

图片

泊松回归(Poisson Regression)是一种广义线性模型,用于建立离散型响应变量(计数数据)与一个或多个预测变量之间的关系。它以法国数学家西蒙·丹尼·泊松(Siméon Denis Poisson)的名字命名,适用于计算“事件发生次数”的概率,比如交通事故发生次数、产品缺陷数量等离散计数数据。

泊松回归假设响应变量(因变量)Y服从泊松分布,该分布用于描述在固定时间或空间范围内发生事件的数量。泊松分布的特点是对于一个特定时间或空间区间,事件发生的平均速率是常数,并且事件之间是独立的。

泊松回归的模型形式如下:


log(λ) = β0 + β1*x1 + β2*x2 + ... + βn*xn

其中,λ表示事件发生的平均速率(事件发生次数的期望),log是自然对数,β0, β1, β2, ..., βn是回归系数,x1, x2, ..., xn是预测变量。

在泊松回归中,使用最大似然估计方法来估计回归系数,最大化观测数据在模型下的似然函数。泊松回归的结果表明每个预测变量对于事件发生次数的影响程度,系数的正负号表示预测变量与事件发生次数之间的正向或负向关系,而系数

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sky J

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值