作品介绍
01
研究背景
人口和产业的增长和集聚,增加了污染物的排放,改变了污染物的扩散条件,导致中国区域空气污染严重,是目前可持续发展面临的重大挑战之一。其中细颗粒物(PM2.5)是国内主要的空气污染物,威胁居民的身心健康,影响城市生态系统中社会、经济和自然等诸多方面。厘清中国区域PM2.5生消扩散的时空演化规律、准确获取PM2.5浓度时空分布格局和变化趋势,对我国大气污染防控治理十分重要。本研究采用国产风云四号静止轨道卫星AGRI传感器数据,挖掘卫星观测多光谱信息对气溶胶特性参数的敏感性,发展适用于高时空分辨率的气溶胶特性物理反演算法;气溶胶特性参数提供大气颗粒物污染的空间分布特征,结合地面PM2.5站点观测资料、再分析气象数据和地形信息,应用人工智能方法估算高时空分辨率的PM2.5浓度;最终实现高时空分辨率的气溶胶特性和地表PM2.5颗粒物浓度动态监测。本研究发展的高精度的气溶胶特性反演和颗粒物估算模型,可为气候变化和大气环境等领域提供算法和技术支撑。
02
研究目标
验证并评估风云卫星辐射定标精度和稳定性