阅读原文:http://club.jr.jd.com/quant/topic/963245
今天来教大家使用量化平台中Python的部分,完成一个简单的策略回测。
首先,回测界面是长这个样子的
可以看到,左半边的大部分区域是编辑代码的地方,开发环境会自动识别Python语言的关键词。在代码区上面的设置标志里面可以个性化调节开发环境的视觉效果。
Python的回测代码主要包括init()函数,handle_data()函数,以及其他用户自定义内容。如果在每天开盘前要进行额外的处理或计算,可选择添加before_trade()函数。
def init(context):
# 这里用来写策略开始时要做什么
def before_trade(context):
# 非强制,在这里写每天开盘之前要做什么,不可下单
def handle_data(context, data_dict):
# 这里用来写每天开盘后要做什么,可以是计算,输出日志,或者下单
其中,init()是初始化函数,可以设置基准,滑点,佣金等回测参数,也可以利用context自定义变量。在Python及大部分其他编程语言中,在局部变量只在该变量定义的函数体有效,在其他函数体内是无效的。而context被定义为一个局部变量,可以把内容在不同函数代码之间传导。该函数在回测开始时运行一次。
handle_data()是每个交易时间点(分钟/日)时自动运行一次的函数,可以在此函数内设置交易判断和下单,是策略核心逻辑所在。
用户可以按照Python语言规则定义其他函数,包括运算/数据处理函数,也可以通过task()函数设置自定义函数的执行频率和执行时间。
接下来,我们用一个简单的策略来演示这个过程。我们策略的内容是对平安银行(000001.SZ)进行择时,如果前一天收益率大于中证全指收益率,则买入持仓,反之则不持仓。
首先,我们在init()函数里面设置我们的股票和比较的标的:
# init方法是您的初始化逻辑。context对象可以在任何方法之间传递。
def init(context):
context.stock = '000001.SZ'
context.set_benchmark = '000985.SH'
其中,只要在“#”后面的内容都是注释,不会被Python编译。设置stock和set_benchmark对象时,一定要在前面加上“context.”,这样才能传递到之后的函数中。设置标的后,回测中的基准曲线和收益将采用设置的指数。
然后我们来编辑每个交易日的逻辑:
# 日或分钟或实时数据更新,将会调用这个方法
def handle_data(context, data_dict):
price = get_history(2, '1d', 'close')[context.stock]
priceBm = get_history(2, '1d', 'close')[context.set_benchmark]
这部分代码获取了目标股票和标的的历史价格,其中context.stock和context.set_benchmark都在init()函数中定义好了。get_history()函数是京东量化平台封装的取历史交易数据的函数。其中“2”代表要取历史两天的数据,以便计算上个交易日的收益。“’1d’”和“'close’”分别表示数据频率为天,所需数据为收盘价。返回的价格为pandas.Series类型。各个平台函数的使用方法可以查看帮助板块中的API文档。
为了方便计算收益率,我自定义了一个CalRet()函数,输入连续两天的价格,计算第二天的收益率:
def CalRet(price):
r = (price[1] - price[0]) / price[0]
return r
这段函数写在handle_data()之前。自定义函数编辑的语法符合Python语法即可。这个函数会返回float类型的r。
我们回到handle_data()函数,利用刚刚定义的函数和获取的股票及指数价格计算收益率:
ytdRet = CalRet(price)
bmRet = CalRet(priceBm)
可以得到上个交易日股票的收益率ytdRet和指数收益率bmRet。之后我们进行判断,如果ytdRet大于bmRet,则全仓买入平安银行股票,否则清仓。
if ytdRet > bmRet:
order_target_percent(context.stock, 1)
else:
order_target_percent(context.stock, 0)
order_target_percent()是量化平台编辑的下单函数,可以设置某个股票的仓位至一个百分比。平台同样支持加减仓,用手数,金额等方式下单,详见API文档。
现在,我们就完成了这个策略的设计。回测平台会自动按照这个逻辑,在回测区间内完成交易。
我们设置回测区间为今年,初始金额为一百万,调仓频率为每天,点击“运行回测”。结果如下:
我们可以看到在回测区间内,策略和基准的净值曲线,每天盈亏,买卖等图像,以及回测的技术指标。同时可以查看相对收益,对数收益等。我们可以看到,这个策略没有能够跑赢大盘。当然,这只是一个例子。
在左边的交易详情,持仓和输出日志中可以看到回测中的具体情况,方便进行归因分析,调整策略等等,同时还可以查看历史回测记录。
这样我们就成功完成了整个回测过程。更详细的函数使用方法和平台功能,请参加平台的帮助板块。