135. 分发糖果
困难
1.2K
相关企业
n
个孩子站成一排。给你一个整数数组 ratings
表示每个孩子的评分。
你需要按照以下要求,给这些孩子分发糖果:
- 每个孩子至少分配到
1
个糖果。 - 相邻两个孩子评分更高的孩子会获得更多的糖果。
请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。
示例 1:
输入:ratings = [1,0,2] 输出:5 解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。
示例 2:
输入:ratings = [1,2,2] 输出:4 解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。 第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。
解析:
1. 初始化全部为1。
这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼。
2. 先确定右边评分大于左边的情况(也就是从前向后遍历)
此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果。
如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1。
3. 再确定左孩子大于右孩子的情况(从后向前遍历)
如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。
所以就取candy[i]=max(candyVec[i + 1] + 1,candyVec[i]) ;candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多。
class Solution {
public int candy(int[] ratings){
int[] candyVec=new int[ratings.length];
Arrays.fill(candyVec,1);
//先找右边比左边大的,直接加1;
for (int i=1;i< ratings.length;i++){
if (ratings[i]>ratings[i-1]){
candyVec[i]=candyVec[i-1]+1;//比左边的要大1
}
}
//再找左边比右边的大的
for (int i= ratings.length-2;i>=0;i--){
if (ratings[i]> ratings[i+1]){
//取最大的数量:
candyVec[i]=Math.max(candyVec[i],candyVec[i+1]+1);
}
}
int sum=0;
//统计总的数量;
for (int i=0;i<candyVec.length;i++){
sum+=candyVec[i];
}
return sum;
}
}