谷歌云服务器CoLab跑Faster_RCNN记录

本文详细记录了如何在谷歌云服务器CoLab上配置环境、克隆Faster_RCNN源代码、下载预训练权重和数据集,以及解决CUDA版本与GCC不对应的问题,最终成功进行训练的过程。
摘要由CSDN通过智能技术生成

本文参考:使用colab训练faster-rcnn_LCCFlccf的博客-CSDN博客

首先下载配置谷歌云盘下载配置不做介绍。

1.配置环境

!apt-get install -y -qq software-properties-common python-software-properties module-init-tools
!add-apt-repository -y ppa:alessandro-strada/ppa 2>&1 > /dev/null
!apt-get update -qq 2>&1 > /dev/null
!apt-get -y install -qq google-drive-ocamlfuse fuse
from google.colab import auth
auth.authenticate_user()
from oauth2client.client import GoogleCredentials
creds = GoogleCredentials.get_application_default()
import getpass
!google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret} < /dev/null 2>&1 | grep URL
vcode = getpass.getpass()
!echo {vcode} | google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret}

2.克隆Faster_RCNN源代码

!git clone -b pytorch-1.0 https://github.com/jwyang/faster-rcnn.pytorch.git

 

3.进入Faster_ RCNN文件夹

import os
os.chdir('faster-rcnn.pytorch')
!ls

4.下载预训练权重

!mkdir data
os.chdir('data')
!mkdir pretrained_model
os.chdir('pretrained_model')
# 下载预训练模型res101
!wget https://filebox.ece.vt.edu/~jw2yang/faster-rcnn/pretrained-base-models/resnet101_caffe.pth
# 下载预训练模型vgg16
!wget https://filebox.ece.vt.edu/~jw2yang/faster-rcnn/pretrained-base-models/vgg16_caffe.pth

5.下载数据集

os.chdir('../') #返回上一级目录即data/下
# 下载数据集
!wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
!wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
!wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
# 解压缩
!tar xvf VOCtrainval_06-Nov-2007.tar
!tar xvf VOCtest_06-Nov-2007.tar
!tar xvf VOCdevkit_08-Jun-2007.tar
# 建立软连接
!ln -s $VOCdevkit VOCdevkit2007 #注意!如果上面解压缩得到的文件夹名字为"VOCdevdit",要将其改为“VOCdevdit2007",否则后面会报错。

6.删除faster-rcnn.pytorch下的VOCdevkit2007,并修改文件夹VOCdevkit为VOCdevkit2007

!rm -rf VOCdevkit2007

在进行下一步代码编译之前由于CUDA版本预GCC不对应的问题会出现如下错误:

error: command '/usr/local/cuda/bin/nvcc' failed with exit status 1

解决方法运行下面代码:


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值