力扣之滑动窗口 循序渐进刷(209.长度最小的子数组、904. 水果成篮)
所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。 用的双指针
第一题简单题熟悉一下
第二题中等题加强一下
第一题 209.长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续
子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。示例:
输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
在本题中实现滑动窗口,主要确定如下三点:
- 窗口内是什么?
- 如何移动窗口的起始位置?
- 如何移动窗口的结束位置?
窗口就是 满足其和 ≥ s 的长度最小的 连续 子数组。
窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。
窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,窗口的起始位置设置为数组的起始位置就可以了。
可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)暴力解法降为O(n)
class Solution {
// 滑动窗口
public int minSubArrayLen(int s, int[] nums) {
int left = 0;
int sum = 0;
int result = Integer.MAX_VALUE;//表示int最大值,挺大的2几几把 for (int right = 0; right < nums.length; right++) {
sum += nums[right];
while (sum >= s) {
result = Math.min(result, right - left + 1);
sum -= nums[left++];
}
}
return result == Integer.MAX_VALUE ? 0 : result;
}
}
第二题 904. 水果成篮
你正在探访一家农场,农场从左到右种植了一排果树。这些树用一个整数数组 fruits 表示,其中 fruits[i] 是第 i 棵树上的水果 种类 。
你想要尽可能多地收集水果。然而,农场的主人设定了一些严格的规矩,你必须按照要求采摘水果:
你只有 两个 篮子,并且每个篮子只能装 单一类型 的水果。每个篮子能够装的水果总量没有限制。
你可以选择任意一棵树开始采摘,你必须从 每棵 树(包括开始采摘的树)上 恰好摘一个水果 。采摘的水果应当符合篮子中的水果类型。每采摘一次,你将会向右移动到下一棵树,并继续采摘。
一旦你走到某棵树前,但水果不符合篮子的水果类型,那么就必须停止采摘。
给你一个整数数组 fruits ,返回你可以收集的水果的 最大 数目。
//滑动窗口(双指针)左指针判断条件 右指针负责遍历
class Solution {
public int totalFruit(int[] tree) {
if (tree == null || tree.length == 0) return 0;
int n = tree.length;
Map<Integer, Integer> map = new HashMap<>();
int maxLen = 0, left = 0;
for (int i = 0; i < n; i++) { //有三个不相同的水果时候
map.put(tree[i], map.getOrDefault(tree[i], 0) + 1);
while (map.size() > 2) {
map.put(tree[left], map.get(tree[left]) - 1);
//此处不能直接remove,因为考虑到 [3,3,3,1,...]这种情况
//不然333直接删完了
if (map.get(tree[left]) == 0) map.remove(tree[left]);
left++;
}
maxLen = Math.max(maxLen, i - left + 1);
}
return maxLen;
}
}
解释map.
map.getOrDefault(Object key, V defaultValue);
①map中存在key,value返回key对应的value即可。
②map中不存在key,value则返回defaultValue(默认值)。
map.put(num,map.getOrDefault(num, 0) + 1)
①map中含有num的话,就将num对应的value值+1
②map中不含有num的话,num对应的value对应的默认值赋值为0,然后再+1
所以这个方法适合统计数字num出现的次数