自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(51)
  • 收藏
  • 关注

原创 求函数最小值-torch版

目标:torch实现下面链接中的梯度下降法先计算的导函数,然后计算导函数 在处的梯度 (导数)让沿着自变量的更新过程如下torch代码实现如下。

2024-07-03 08:38:39 475 1

原创 tensor版CBOW

小小技能12读语料语料总字数 124301826 跟 fasttext是一样的fasttext构建的词典有:218316个不重复的word (token)我们这里用set得到的是833184个不重复的word (token),根据上面打印的信息来看,fasttext去除了614868没有意义的word。

2024-07-02 18:57:26 608

原创 字符编码-unicode码表

unicode在线码表:https://www.tamasoft.co.jp/en/general-info/unicode.htmlUnicode Table

2024-07-02 11:04:49 476

原创 字符编码:utf-8

在电脑上处理文字的时候,你可能经常接触到一个名词,叫UTF-8你会不会觉得一丝疑惑,这到底是什么东西?用一句话说明的话,UTF-8是一种编码格式,一个字节包含8个比特。等会,什么是编码,什么又是比特?为什么要用这个东西?

2024-06-30 19:46:34 1413

原创 AI技术在现代社会中的广泛应用及其影响

随着科技的不断发展,人工智能(AI)技术逐渐成为人们关注的焦点。AI技术在现代社会中已经广泛应用于各个领域,对我们的生活、工作产生了深远的影响。在近年来的迅速发展中,人工智能(AI)已经渗透到了我们生活中的方方面面。这一技术在各个领域的应用日益广泛,正在对我们的生活、工作产生深远的影响。目前,新华电脑教育已经建立起一套全新的涵盖鸿蒙开发、人工智能技术应用等多个智能制造关键领域的专业课程体系,以培养适应AI技术在未来重要作用的高技能人才。

2024-06-28 15:03:15 959

原创 高考之后,如何选择学校和专业?

因此,在选择学校和专业时,我们要充分了解其在国内外的影响力,力求选择综合实力较强的院校。此外,随着“一带一路”倡议的推进,沿线国家的语言、文化、经济等领域的专业也将迎来新的发展机遇。每年的高考都是我国学生们人生中的一次重要转折点,而高考之后的学校和专业选择,则是对未来人生道路的又一次重要抉择。在选择学校和专业时,我们要结合自己的兴趣和特长,力求找到最适合自己的发展道路。这些行业的就业前景看好,不仅因为它们是全球经济和技术发展的趋势所在,而且因为它们能够提供创新和增长的机会,帮助解决一些世界上最紧迫的问题。

2024-06-27 14:07:24 1224

原创 高等数学-级数

【代码】高等数学-级数。

2024-06-27 13:59:04 188

原创 cv知识点(卷积和池化)

1.卷积核(Kernel):卷积操作的感受野,直观理解就是一个滤波矩阵,普遍使用的卷积核大小为3×3、5×5等;2.步长(Stride):卷积核遍历特征图时每步移动的像素,如步长为1则每次移动1个像素,步长为2则每次移动2个像素(即跳过1个像素),以此类推;3.填充(Padding):处理特征图边界的方式,一般有两种,一种是对边界外完全不填充,只对输入像素执行卷积操作,这样会使输出特征图的尺寸小于输入特征图尺寸;

2024-06-23 19:36:13 866

原创 gcc与g++介绍

目前 Linux下最常用的C语言编译器是GCC(GNU Compiler Collection),它是GNU项目中符合ANSI C标准的编译系统,能够编译用C、C++和Object C等语言编写的程序。(GNU 编译器集合),在为Linux开发应用程序时,绝大多数情况下使用的都是C语言,因此几乎每一位Linux程序员面临的首要问题都是如何灵活运用C编译器。最值得称道的一点就是它可以通过不同的前端模块来支持各种语言,如Java、 Fortran、Pascal、Modula-3和Ada等。

2024-06-23 18:39:33 307

原创 nvidia历史版本驱动

https://www.nvidia.cn

2024-06-21 14:54:13 3031

原创 Vscode远程ubuntu

远程连接到这里vscode远程到ubuntu和关闭远程连接,已完成在远程目录下新建.vscode隐藏文件夹,文件夹里新建一个 settings.json 文件,先远程服务器看下conda下的python虚拟环境位置settings.json位置及内容如下。

2024-06-21 14:26:27 399

原创 stb减均值

各个通道对应的均值:[ 0.2, 0.6, 0.3]V范围: [118,177]Y范围: [16,234]U范围: [86,134]

2024-06-20 20:31:01 506

原创 std除标准差

各个通道对应的标准差std = [ 1.1, 1.4, 1.7]V范围: [118,177]Y范围: [16,234]U范围: [86,134]

2024-06-20 20:28:40 294

原创 计算机顶级会议和顶级期刊

CV四小龙是指中国在计算机视觉(Computer Vision,简称CV)领域内的四家领先的人工智能公司,它们分别是商汤科技、旷视科技、云从科技和依图科技。(ICCD):由国际电气与电子工程师协会(IEEE)主办,是计算机体系结构领域的国际顶级会议之一,已经成功举办四十余届。(ICCV):由电气与电子工程师协会(IEEE)主办,被认为是计算机视觉领域的顶级会议之一,与CVPR和ECCV齐名。》:该期刊关注软件构建、分析或管理的潜在影响的明确理论成果和经验研究,覆盖软件工程领域的理论发展和实践应用。

2024-06-19 19:29:06 4378

原创 常见的优化器

功能:用于优化模型参数,通过更新参数以最小化损失函数。其中,θ表示模型参数,learning_rate表示学习率,∇J(θ)表示损失函数J关于θ的梯度。用法:常用于深度学习中的优化过程,每次迭代更新参数时仅使用一个样本或一小批样本。主要参数:learning_rate(学习率)

2024-06-19 19:16:28 1356

原创 传统车牌识别

H.jpg9.jpg沪.jpg。

2024-06-18 20:36:11 641

原创 flask部署mtcnn

示例图片:打印人脸检测信息打印结果。

2024-06-18 20:26:04 436

原创 目标检测:NMS代码

NMS是目标检测常用的后处理算法,用于剔除冗余检测框总体概要:对NMS进行分类,大致可分为以下六种,这里是依据它们在各自论文中的核心论点进行分类,这些算法可以同时属于多种类别。分类优先:传统NMS,定位优先:IoU-Guided NMS (ECCV 2018)加权平均:Weighted NMS (ICME Workshop 2017)方差加权平均:Softer-NMS (CVPR 2019)自适应阈值:Adaptive NMS (CVPR 2019)

2024-06-17 19:52:02 491

原创 目标检测:IOU

IOU(Intersection over Union)交并比:它计算的是“预测的边框”和“真实的边框”的交叠率,即它们的交集和并集的比值。这个比值用于衡量预测边框与真实边框的重叠程度,从而评估目标检测的准确性。在目标检测任务中,通常使用bounding box与ground truth之间的IoU值大小来判断预测结果的好坏。一般情况下,认为IoU>0.5就是一个不错的预测结果。两个box区域的交集除以并集总的来说。

2024-06-17 19:44:36 731 1

原创 模型评价指标

VOC2010之后:AP采用插值方法计算,AP = 1/n ∑ Max(p(r(k))) * (r(k)-r(k-1)),其中r(k)是第k大的召回率,Max(p(r(k)))是在r(k)点的最大precision值。VOC2010之前:AP = 1/11 ∑ Max(p(r)),其中r∈{0,0.1,...,1},Max(p(r))表示在r点的最大precision值。在比较两个模型时,可以通过比较曲线下方的面积来评估它们的性能,面积越大的模型对应的PR曲线在整个召回率范围内都表现更好。

2024-06-16 20:37:40 915

原创 CCPD数据集

把train/val/test文件夹下的图片拷到green文件夹。

2024-06-16 19:11:08 478

原创 线性回归模型讲解(Linear Regression)

你可以收集一系列房屋的面积和对应的售价数据,然后使用简单线性回归来拟合一条直线,这条直线可以表示房价如何随着房屋面积的增加而增加(或减少,取决于直线的斜率)。继续上面的例子,除了房屋面积之外,你可能还想考虑其他因素如何影响房价,如房屋的年龄(x2)、地理位置(可能是分类变量,如x3表示是否靠近学校,是则为1,否则为0)等。这为经济政策制定提供了重要的支持。学习时间与考试成绩之间的关系:教育工作者可以通过收集学生的学习时间和对应的考试成绩数据,建立线性回归模型,以评估学习时间的投入对考试成绩的影响。

2024-06-15 10:44:38 1149

原创 神经网络(深度学习)

是让机器获得像人类一样具有思考和推理机制的智能技术,这一概念最早出现在 1956 年召开的达特茅斯会议上。其中深度学习可以理解为神经网络。刚开始只有神经网络的概念,随着神经网络的层数增加,就逐渐将神经网络叫做深度学习。发展简史:神经网络的发展历程大致分为浅层神经网络阶段和深度学习阶段。(1)1943 年,心理学家 Warren McCulloch 和逻辑学家 Walter Pitts 根据生物神经元(Neuron) 结构,提出了最早的神经元数学模型,称为 MP 神经元模型。

2024-06-15 09:59:45 1336

原创 Linux常⽤服务器构建-samba

Samba是在Linux和UNIX系统上实现SMB协议的⼀个免费软件,能够完成在windowsmac操作系统下访问linux系统下的共享⽂件。

2024-06-14 08:24:45 649

原创 Linux常⽤服务器构建-ssh和scp

是⽬前较可靠,专为远程登录会话和其他⽹络服务提供安全性的协议。服务,需要安装相应的服务器和客户端。客户端和服务器的关系:如果,中,再次访问,就不会有这些信息了。协议可以有效防⽌远程管理过程中的信息泄露问题。访问,如访问出现错误。为建⽴在应⽤层和传输层基础上的安全协议。⼀个程序,后来⼜迅速扩展到其他操作平台。告知⽤户,这个主机不能识别,这时键⼊。在正确使⽤时可弥补⽹络中的漏洞。录,以及⽤户之间进⾏资料拷⻉。客户端适⽤于多种平台。,以及其他平台,都可运⾏。参数,拷⻉⽬录必须要加。机器远程控制,那么,

2024-06-14 08:18:56 1027 1

原创 Linux常⽤服务器构建-ftp服务器

序,⽽所有这些应⽤程序都遵守同⼀种协议以传输⽂件。⽂件就是将⽂件从⾃⼰的计算机中拷⻉⾄远程主机上。⽂件就是从远程主机拷⻉⽂件⾄⾃⼰的计算机上;通过客户机程序向(从)远程主机上传(下载)⽂件。(⽂件传输协议)的英⽂简称,⽽中⽂简称为。基于不同的操作系统有不同的。上的控制⽂件的双向传输。同时,它也是⼀个应⽤程序(服务器上的⽂件下载到本地。

2024-06-13 20:48:07 241

原创 Ubuntu软件操作的相关命令

清理⽆⽤的包 : sudo apt-get clean && sudo apt-get autoclean。删除包,包括配置⽂件等 : sudo apt-get remove package --purge。重新安装包 : sudo apt-get install package --reinstall。安装相关的编译环境 : sudo apt-get build-dep package。修复安装 : sudo apt-get -f install。更新源 : sudo apt-get update。

2024-06-13 20:41:37 864

原创 ubuntu软件安装

所谓的镜像源:可以理解为提供下载软件的地⽅,⽐如Android⼿机上可以下载软件的91⼿机助⼿;iOS⼿机上可以下载软件的AppStore。

2024-06-13 20:37:57 421

原创 gedit编辑器

vi是的简称,它在Linux上的地位就仿佛Edit程序在DOS上⼀样。它可以执⾏输出、删除、查找、替换、块操作等众多⽂本操作,⽽且⽤户可以根据⾃⼰的需要对其进⾏定制。Vi不是⼀个排版程序,它不象Word或WPS那样可以对字体、格式、段落等其他属性进⾏编排,它只是⼀个⽂本编辑程序。vi没有菜单,只有命令,且命令繁多Vi有三种基本⼯作模式:命令模式⽂本输⼊模式末⾏模式。

2024-06-13 20:30:52 1185

原创 Linux命令-⽤户、权限管理

由于系统管理员通常需要使⽤多种身份登录系统,例如通常使⽤普通⽤户登录系统,然后。如果创建⽤户的时候,不指定组名,那么系统会⾃动创建⼀个和⽤户名⼀样的组名。每个⽤户都要有⼀个主⽬录,主⽬录就是第⼀次登陆系统,⽤户的默认当前⽬。安装的过程中,系统会⾃动创建许多⽤户账号,⽽这些默认的⽤户就称为。,如果主⽬录不存在,就⾃动创建主⽬录,同时⽤户属于test。系统⼯作中重要的⼀环,⽤户管理包括⽤户与组账号的管理。命令的⼀个链接,因此,这两个命令的使⽤格式完全⼀样。⽬录不存在,就⾃动创建这个 ⽬录,同时⽤户属于abc。

2024-06-12 18:56:37 764

原创 Linux命令-系统管理

命令⽤于检测⽂件系统的磁盘空间占⽤和空余情况,可以显示所有⽂件系统对节点和磁。进程是⼀个具有⼀定独⽴功能的程序,它是操作系统动态执⾏的基本单元。命令⽤于统计⽬录或⽂件所占磁盘空间的⼤⼩,该命令的执⾏结果与。递归显示指定⽬录中各⽂件和⼦⽬录中⽂件占⽤的数据块。命令能够在运⾏后,在指定的时间间隔更新显示。命令可以查看进程的详细状况,常⽤选项。显示各指定⽂件系统的磁盘空间使⽤情况。命令指定进程号的进程,需要配合。显示所有⽂件系统的磁盘使⽤情况。命令⽤来动态显示运⾏中的进程。显示指定⽂件或⽬录占⽤的数据块。

2024-06-12 13:55:42 630

原创 Linux命令-文件、磁盘管理

该选项通常在复制⽬录时使⽤,它保留链接、⽂件属性,并递归地复制⽬录,简单⽽⾔,保持⽂件原有属性。需要注意的是新建⽬录的名称不能与当前⽬录中已有的⽬录或⽂件同名,并且⽬录创建者。注意:如果软链接⽂件和源⽂件不在同⼀个⽬录,源⽂件要使⽤绝对路径,不能使⽤相对。的简写,其功能为列出⽬录的内容,是⽤户最常⽤的命令之⼀,它类似于。将递归复制该⽬录下的所有⼦⽬录和⽂件,⽬标⽂件必须为⼀个⽬录名。命令的功能是将给出的⽂件或⽬录复制到另⼀个⽂件或⽬录中,相当于。列⽂件归档到⼀个⼤⽂件中,也可以把档案⽂件解开以恢复数据。

2024-06-11 16:34:32 1037

原创 YOLOV5总结

Focus模块在v5中是图片进入backbone前,对图片进行切片操作,具体操作是在一张图片中每隔一个像素拿到一个值,类似于邻近下采样,这样就拿到了四张图片,四张图片互补,长的差不多,但是没有信息丢失,这样一来,将W、H信息就集中到了通道空间,输入通道扩充了4倍,即拼接起来的图片相对于原先的RGB三通道模式变成了12个通道,最后将得到的新图片再经过卷积操作,最终得到了没有信息丢失情况下的二倍下采样特征图。与FPN类似,PAN也是一种金字塔式的特征提取网络,但是它采用的是自下而上的特征传播方式。

2024-06-11 11:24:32 1079

原创 Linux权限

⽂件权限就是⽂件的访问控制权限,即哪些⽤户和组群可以访问⽂件以及可以执⾏什么样的操作。Unix/Linux系统是⼀个典型的多⽤户系统,不同的⽤户处于不同的地位,对⽂件和⽬录有不同的访问权限。为了保护系统的安全性,Unix/Linux系统除了对⽤户权限作了严格的界定外,还在⽤户身份认证、访问控制、传输安全、⽂件读写权限等⽅⾯作了周密的控制。在Unix/Linux中的每⼀个⽂件或⽬录都包含有访问权限,这些访问权限决定了谁能访问和如何访问这些⽂件和⽬录。

2024-06-10 20:25:37 859

原创 介绍Linux

win7MacAndroidiOS内核(kernel)是系统的⼼脏,是运⾏程序和管理像磁盘和打印机等硬件设备的核⼼程序,它提供了⼀个在裸设备与应⽤程序间的抽象层。Linux内核版本⼜分为稳定版和开发版,两种版本是相互关联,相互循环:稳定版:具有⼯业级强度,可以⼴泛地应⽤和部署。新的稳定版相对于较旧的只是修正⼀些bug或加⼊⼀些新的驱动程序。开发版:由于要试验各种解决⽅案,所以变化很快。内核源码⽹址:所有来⾃全世界的对Linux源码的修改最终都会汇总到这个⽹站,由。

2024-06-10 19:18:19 1507

原创 配置python环境

现在2024.6,这个项目是四年前,如果按照上面的requirements.txt文件,python和依赖包会是最新版,所以下面我们将会以最低版安装。由下图可知,该服务器版本最高可支持cuda版本。由上图可知,并没有指定版本号。

2024-06-08 11:01:36 203

原创 人工智能发展史

起步发展期:1943年—20世纪60年代反思发展期:20世纪70年代应用发展期:20世纪80年代平稳发展期:20世纪90年代—2010年蓬勃发展期:2011年至今。

2024-06-08 08:45:38 5067

原创 矩阵的运算及数组的创建

创建矩阵:矩阵的行数和列数:矩阵的加法:矩阵的乘法:转置:行列式:逆矩阵:伴随矩阵:矩阵的秩:解方程组:特征值、特征向量:特殊数组全零矩阵:全一矩阵:单位矩阵:对角矩阵:同型矩阵:矩阵的拼接:空矩阵:0-1之间的随机小数:任意两个数之间的随机小数数组:任意两个数之间的随机整数数组:统计函数求和:按行(列)求和:最大(小)值:平均值:方差: 标准差:中位数:一维数组: 重新塑形:变一维:

2024-06-07 18:50:24 465

原创 YOLOV3总结

第二个输出的26*26特征图,输出维度26*26--通过conv2d,将x由512通道数转换成256通道数--通过2倍的上采样,将13*13结构,转换26--13*13获取的感受野与中等大小目标做融合拼接。:就是通过3*3卷积核进行卷积得到2个特征图,其中第二个特征图由第一个特征图的3*3卷积区域所决定,这个时候可以说,第二个特征图的(一个函数网格)这个未知的感受野就是第一个特征图中的3*3卷积的区域。特征提取--->使用2个concat--->融入特征信息更加丰富,融入多持续特征图信息来预测。

2024-06-07 14:15:00 861

原创 python3.8_CUDA安装

Window+R 进入cmd,输入nvcc -V查看是否有显示。如果有如图的显示,那么就说明有cuda,如果没有就说明需要下载cuda。torch后面的数字是torch版本,cp后是对应的python版本,还要注意操作系统。查看cuda版本信息,如图所示我的就是cuda12.1。选择合适的版本,注意一定要选择cu开头的才是gpu版本。这里我加了清华源,因为我安装时发现我不加清华源会报错。显示Successfully就说明安装成功。运行后,系统输出安装版本即代表安装成功。1.在桌面有机,点击显示设置。

2024-06-06 14:10:20 597

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除