F - 最少拦截系统 (包含 LIS,和非最长上升子序列)

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能超过前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹. 
怎么办呢?多搞几套系统呗!你说说倒蛮容易,成本呢?成本是个大问题啊.所以俺就到这里来求救了,请帮助计算一下最少需要多少套拦截系统. 

Input

输入若干组数据.每组数据包括:导弹总个数(正整数),导弹依此飞来的高度(雷达给出的高度数据是不大于30000的正整数,用空格分隔) 

Output

对应每组数据输出拦截所有导弹最少要配备多少套这种导弹拦截系统. 

Sample Input

8 389 207 155 300 299 170 158 65

Sample Output

2

第一种:  直接求出每一个导弹拦截系统当前所能拦截的最大值并把它之后所有能拦截的都拦截掉,

注意这里并不求最多可以拦截多少个,而是一旦可以拦截,就拦截掉并在之后寻找更低的。

按此思路上面的例子就有正确解了       6>4>1,一个7>3>2一个,所以共两个。

第二种方法: 给定排好序的一堆数列中,求其的LIS长度。它的LIS长度就是它非上升子序列的个数。

 从这句话中我们就可以知道我们就可以直接求原来序列的最长升序子序列 ,它的长度就是原题的解。


在这里对第二种方法进行解释一下:

     给定排好序的一堆数列中,求其的LIS长度。它的LIS长度就是它   非上升子序列    的个数。

  WHY?

          其实自己模拟一下就可以发现:计算出第一组非上升子序列,它的最后一个数一定是这组数列的最小的一个数;第二组非上升子序列的最后一个数就一定会是剩下的 数中最小的一个..........那么,上升子序列的长度是多少,就一定可以排出多少组非上升子序列,但每一组非上升子序列的最后一个数并不一定就是所 求上升子序列的里的数,但每一组一定有一个数是所求最长上升子序列里的数.........

  因为给出的数字(a[])是已经排好序的,因此这组数字的最长上升子序列的第一个数(用b[0]表示),b[0]应该在这组数(a[])的第一组非上升子序列里面

 //     这是因为第一组最长非上升子序列是从这组数的第一个数字开始的而且是能搜索到这组数(a[])最小的数字的!!!故最长上升子序列的第一个数b[0],只能在第一组非上升子序列里~

      那么~b[0]确定的话,b[1]是绝对不会在b[0]这组里面,它存在于第二组非上升子序列里~

 //     因为排好的是第一组非上升子序列,若b[0]确定是这组的某个数,哪么该数后面的数绝对<=b[0],故b[1]只会在第二组非上升子序列里


Code:

第一种方法:

我就是用第一种方法A 的,介绍一下思路:

如果该导弹没有被拦截(用 vis 数组标记),说明需要另外一个拦截系统,然后另该导弹的高度为当前最低,往后遍历,遇到

没有被拦截并且高度小于当前高度的,就能被拦截掉,用 vis 标记被拦截了,另当前高度为最低高度,再去判断后来的

 

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cstring>
#include<set>
using namespace std;
int a[1001];
int vis[1001];
int main()
{
    int n;
    int minn;
    while(scanf("%d",&n)!=EOF){
        int ans=0;
        for(int i=0;i<n;i++)
            scanf("%d",&a[i]);
       memset(vis,0,sizeof(vis));
       for(int i=0;i<n;i++){
            if(vis[i]==0){
                ans++;
                minn=a[i];
                for(int j=i+1;j<n;j++){
                    if(vis[j]==0&&a[j]<=minn){
                        vis[j]=1;
                        minn=a[j];
                    }
                }
            }
        }
        cout<<ans<<endl;
    }
}

第二种方法:(最长上升子序列的长度,有两种方法 dp+二分)

dp Code:

#include<iostream>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstdlib>
using namespace std;
int main()
{
    int n;
    int dp[1001];
    int a[1001];
    while(scanf("%d",&n)!=EOF)
    {
        int ans=0;
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            dp[i]=1;
            for(int j=1;j<i;j++)
                if(a[j]<a[i])
                    dp[i]=max(dp[i],dp[j]+1);
            ans=max(ans,dp[i]);
        }
        cout<<ans<<endl;
    }
}

二分 Code:

#include<iostream>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstdlib>
using namespace std;
int main()
{
    int n;
    int ans[1002];
    int a[1001];
    while(scanf("%d",&n)!=EOF)
    {
        int ans1=0,sum=0;
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        memset(ans,0,sizeof(ans));
        for(int i=1;i<=n;i++)
        {
            int l=0,r=ans1,mid;
            while(l<r)
            {
                mid=(l+r)/2;
                if(ans[mid]<=a[i])
                    l=mid+1;
                else
                    r=mid;
            }
            ans[l]=a[i];
            if(l==ans1)
                ans1++;
        }
        cout<<ans1<<endl;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值