python基础2——数据的删除合并
目标:对于给定的两个excel文件中的数据,删除不需要的行或列,之后根据某一列进行合并。
drop,merge
import pandas as pd
import numpy as np
dt_t1=pd.read_csv("E:/问为实习/file_data/test_1.csv")
dt_t1.head() ##默认前五行
col=dt_t1.columns
col
dt_t1=dt_t1.drop(['区域','分公司','事业部','类型','年份','立项金额','保证金','扣点金额','扣点','成本预算','开票日期','开票合计','回款合计', '收款日期','立项时项目状态','封账', '项目属性', '回款日期', '决算日期','结算收入','收入税金','结算成本'],axis=1)
dt_t1.head(3) #其中axis=1表示按列删除;axis=0表示按行删除
gx=pd.read_csv("E:/问为实习/file_data/dt_gx1.csv")
#数据合并方式为按照项目名称,de_t1放在左面进行合并
dt_sa=pd.merge(dt_t1,gx,how='left',on=['项目名称'])
dt_sa.head(3)
dt_sa.to_excel("E:/问为实习/file_data/合并结果.xlsx",sheet_name='result',index=False)
运行结果展示
concat
两个具有相同列名的excel表格,将它们按照上下合并,,之后按照“顾问“这一列进行数据分组查询计数每一个姓名重复的次数
import pandas as pd
dt1=pd.read_excel('E:/生活/1.xlsx')
dt2=pd.read_excel('E:/生活/2.xlsx')
'''
将数据进行上下合并,即按行合并
'''
dt=pd.concat([dt1,dt2])
'''
以下两个语句都是按照顾问进行分组计数的,第一个运行出来的结果是数据框,表示按照”顾问“这一列数据计数其他几列的个数,第二个语句是直接计数顾问这一列不同的名字各有多少
'''
rs1=dt.groupby['顾问'].count()
rs2=dt.groupby['顾问']['顾问'].count()
运行结果展示