python基础2——数据的删除合并

该博客介绍了如何使用Python的pandas库对Excel文件进行数据处理,包括删除指定列、按列合并数据以及数据分组计数。首先通过`drop`函数删除指定列,然后使用`merge`按'项目名称'列进行左连接合并,最后将结果保存为新的Excel文件。此外,还展示了如何使用`concat`函数将两个Excel文件按行合并,并按'顾问'列进行分组计数。
摘要由CSDN通过智能技术生成

python基础2——数据的删除合并

目标:对于给定的两个excel文件中的数据,删除不需要的行或列,之后根据某一列进行合并。

drop,merge

import pandas as pd
import numpy as np
dt_t1=pd.read_csv("E:/问为实习/file_data/test_1.csv")
dt_t1.head()  ##默认前五行
col=dt_t1.columns
col
dt_t1=dt_t1.drop(['区域','分公司','事业部','类型','年份','立项金额','保证金','扣点金额','扣点','成本预算','开票日期','开票合计','回款合计', '收款日期','立项时项目状态','封账', '项目属性', '回款日期', '决算日期','结算收入','收入税金','结算成本'],axis=1)
dt_t1.head(3) #其中axis=1表示按列删除;axis=0表示按行删除
gx=pd.read_csv("E:/问为实习/file_data/dt_gx1.csv")
#数据合并方式为按照项目名称,de_t1放在左面进行合并
dt_sa=pd.merge(dt_t1,gx,how='left',on=['项目名称'])  
dt_sa.head(3)
dt_sa.to_excel("E:/问为实习/file_data/合并结果.xlsx",sheet_name='result',index=False) 

运行结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

concat

两个具有相同列名的excel表格,将它们按照上下合并,,之后按照“顾问“这一列进行数据分组查询计数每一个姓名重复的次数

import pandas as pd
dt1=pd.read_excel('E:/生活/1.xlsx')
dt2=pd.read_excel('E:/生活/2.xlsx')
'''
将数据进行上下合并,即按行合并
'''
dt=pd.concat([dt1,dt2])
'''
以下两个语句都是按照顾问进行分组计数的,第一个运行出来的结果是数据框,表示按照”顾问“这一列数据计数其他几列的个数,第二个语句是直接计数顾问这一列不同的名字各有多少
'''
rs1=dt.groupby['顾问'].count()
rs2=dt.groupby['顾问']['顾问'].count()

运行结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

需要数据表请留言,看到会发给你

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值