送给大家一句话:
一个人认清了他在这世界上要做的事情,并且在认真地做着这些事情,他就会获得一种内在的平静和充实。 – 周国平
🌅🌅🌅🌅🌅🌅🌅
🖼️🖼️🖼️🖼️🖼️🖼️🖼️
从零开始构建AVL树
🏝️1 什么是AVL树
前两篇文章:
【C++】从零开始构建二叉搜索树
【C++】初探 map 与 set
我们学习了二叉搜索树:二叉搜索树虽可以缩短查找的效率,如果数据有序或接近有序二叉搜索树将退化为单支树,这样二叉搜索树效率退化为O(n),不够高效!所以就有了改进版的二叉搜索树->AVL树(平衡二叉搜索树)
在1962年,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
map与set 的底层实现也是AVL树或红黑树!
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
- 它的左右子树都是AVL树
- 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1 / 0 / 1 )
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度 O( l o g 2 n log_2 n log2n)
通过每次插入删除的调整保证二叉树始终保持一个近乎完美的完全二叉树,规避了极端情况下二叉搜索树退化为单枝树的情况
接下来我们就来研究如何实现AVL树!!!
🏝️2 实现AVL树
🏜️ 2.1 框架构建
首先AVL树是在二叉搜索树的基础上进行改进,AVL树节点中加入了:
- 平衡因子
_bf
:左右子树的高度差right子树高度 - left子树高度
,即左子树插入节点时_bf--
,右子树插入节点时_bf++
! - 父指针
_parent
:指向父节点的指针,为了可以回溯更新父节点的平衡因子。
template<class K, class V>
struct AVLtreeNode
{
typedef AVLtreeNode<K, V> Node;
//三叉树结构
Node* _parent;
Node* _left;
Node* _right;
//键值对
pair<K, V> _kv;
//平衡因子
int _bf;
AVLtreeNode(pair<K, V> kv)
:_parent(nullptr)
,_right(nullptr)
,_left(nullptr)
,_kv(kv)
,_bf(0)
{
}
};
注意构造函数的初始化列表,不要出现野指针!!!
🏜️ 2.2 插入函数
先不管平衡因子这个变量,AVL树的插入比二叉搜索树略微复杂一点,需要多处理一步父指针:
bool Insert(pair<K, V> kv)
{
Node* node = new Node(kv);
//如果为空直接赋值
if (_root == nullptr)
{
_root = node;
return true;
}
//反之寻找插入位置(按照 key 比较大小)
else
{
Node* cur = _root;
Node* parent = nullptr;
while (cur != nullptr)
{
parent = cur;
if (cur->_kv.first > kv.first)
{
cur = cur->_left;
}
else if(cur->_kv.first < kv.first)
{
cur = cur->_right;
}
else
{
//二叉搜索树默认不重复数据
return false;
}
}
//按照大小插入节点
if (kv.first > parent->_kv.first)
{
parent->_right = node;
}
else
{
parent->_left = node;
}
//记得要处理父指针!!!
node->_parent = parent;
cur = node;
//更新平衡因子
//...
}
}
结下来就是处理平衡因子:左子树插入节点时_bf--
,右子树插入节点时_bf++
这里思考一下,平衡因子的处理要到什么情况才停下来???
当我们插入一个新节点时,有两种情况:
- 插入parent的左子树,parent的平衡因子减一!
- 插入parent的右子树,parent的平衡因子加一!
父节点的平衡因子经过更新