leetcode416、322、518—— 0-1背包问题(笔试热点)、完全背包

背包问题

1、0-1背包问题

1.1、标准0-1背包

背包问题是什么

给你一个可装载重量为W的背包和N个物品,每个物品有重量价值两个属性。其中第i个物品的重量为wt[i],价值为val[i],现在让你用这个背包装物品,最多能装的价值是多少?

N = 3, W = 4
wt = [2, 1, 3]
val = [4, 2, 3]

算法返回 6,选择前两件物品装进背包,总重量 3 小于W,可以获得最大价值 6
1.1.1、思路

1、明确状态
只要给定几个可选物品和一个背包的容量限制,就形成了一个背包问题,对不对?所以状态有两个,就是「背包的容量」和「可选择的物品」。

for 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 择优(选择1,选择2...)

2、明确dp数组的定义
dp[i][w]的定义如下:对于前i个物品,当前背包的容量为w,这种情况下可以装的最大价值是dp[i][w]

比如说,如果 dp[3][5] = 6,其含义为:对于给定的一系列物品中,若只对前 3 个物品进行选择,当背包容量为 5 时,最多可以装下的价值为 6

3、明确base case

base case 就是dp[0][..] = dp[..][0] = 0,因为没有物品或者背包没有空间的时候,能装的最大价值就是 0。
4、明确状态转移方程

dp[i][w]表示:对于前i个物品,当前背包的容量为w时,这种情况下可以装下的最大价值是dp[i][w]。

1、如果你没有把这第i个物品装入背包,那么很显然,最大价值dp[i][w]应该等于dp[i-1][w]。你不装嘛,那就继承之前的结果。

2、如果你把这第i个物品装入了背包,那么dp[i][w]应该等于dp[i-1][w-wt[i-1]] + val[i-1]

for (int i = 1; i <= N; i++) {
        for (int w = 1; w <= W; w++) {
            if (w - wt[i-1] < 0) {
                // 当前背包容量装不下,只能选择不装入背包
                dp[i][w] = dp[i - 1][w];
            } else {
                // 装入或者不装入背包,择优
                dp[i][w] = max(dp[i - 1][w - wt[i-1]] + val[i-1], 
                               dp[i - 1][w]);
            }
        }
    }
1.1.2、题解
//对于标准0/1背包问题解法
int knapsack(int W, int N, vector<int>& wt, vector<int>& val) {
    // vector 全填入 0,base case 已初始化
    vector<vector<int>> dp(N + 1, vector<int>(W + 1, 0));
    for (int i = 1; i <= N; i++) {
        for (int w = 1; w <= W; w++) {
            if (w - wt[i-1] < 0) {
                // 当前背包容量装不下,只能选择不装入背包
                dp[i][w] = dp[i - 1][w];
            } else {
                // 装入或者不装入背包,择优
                dp[i][w] = max(dp[i - 1][w - wt[i-1]] + val[i-1], 
                               dp[i - 1][w]);
            }
        }
    }

    return dp[N][W];
}

优化

#include<iostream>
#include<vector>
#include<algorithm>

using namespace std;

int main()
{
    int N = 0,W = 0;
    cin >> N >> W;
    vector<int>wt(N,0);
    vector<int>val(N,0);
    for(int i = 0;i < N;i++)
    {
        cin >> wt[i] >> val[i];
    }
    vector<int>dp(W+1,0);
    for (int i = 0; i < N; i++) {
        for (int w = W; w >= wt[i]; w--) 
                dp[w] = max(dp[w - wt[i]] + val[i], dp[w]);
        }
    

    cout << dp[W] << endl;
    
    return 0;
}

1.2、分割等和子集

原题链接
给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集元素和相等

注意:

每个数组中的元素不会超过 100
数组的大小不会超过 200

示例 1:

输入: [1, 5, 11, 5]

输出: true

解释: 数组可以分割成 [1, 5, 5][11].
 

示例 2:
输入: [1, 2, 3, 5]
输出: false
解释: 数组不能分割成两个元素和相等的子集.
1.2.1、思路

那么对于本文的问题,我们可以先对集合求和,得出sum,把问题转化为背包问题:

给一个可装载重量为sum/2的背包和N个物品,每个物品的重量为nums[i]。现在让你装物品,是否存在一种装法,能够恰好将背包装满?

1、明确状态
状态就是「背包的容量」和「可选择的物品」

2、明确dp数组的定义
dp[i][j] = x : 对于前i个物品,当前背包的容量为j时,若x为true,则说明可以恰好将背包装满,若x为false,则说明不能恰好将背包装满

比如说,如果dp[4][9] = true,其含义为:对于容量为 9 的背包,若只是用前 4 个物品,可以有一种方法把背包恰好装满

根据这个定义,我们想求的最终答案就是dp[N][sum/2].

3、明确base case

base case : dp[..][0] = truedp[0][..] = false,因为背包没有空间的时候,就相当于装满了,而当没有物品可选择的时候,肯定没办法装满背包。

4、明确状态转移方程

可以根据「选择」对dp[i][j]得到以下状态转移:

1、如果不把nums[i]算入子集,或者说你不把这第i个物品装入背包,那么是否能够恰好装满背包,取决于上一个状态dp[i-1][j],继承之前的结果。

2、如果把nums[i]算入子集,或者说你把这第i个物品装入了背包,那么是否能够恰好装满背包,取决于状态dp[i - 1][j-nums[i-1]]

for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= sum; j++) {
            if (j - nums[i - 1] < 0) {
               // 背包容量不足,不能装入第 i 个物品
                dp[i][j] = dp[i - 1][j]; 
            } else {
                // 装入或不装入背包
                dp[i][j] = dp[i - 1][j] | dp[i - 1][j-nums[i-1]];
            }
        }
    }
1.2.2、题解
class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = 0;
        for (int num : nums) sum += num;
        // 和为奇数时,不可能划分成两个和相等的集合
        if (sum % 2 != 0) return false;
        int n = nums.size();
        sum = sum / 2;
        vector<vector<bool>> 
            dp(n + 1, vector<bool>(sum + 1, false));
        // base case
        for (int i = 0; i <= n; i++)
            dp[i][0] = true;

        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= sum; j++) {
                if (j - nums[i - 1] < 0) {
                // 背包容量不足,不能装入第 i 个物品
                    dp[i][j] = dp[i - 1][j]; 
                } else {
                    // 装入或不装入背包
                    dp[i][j] = dp[i - 1][j] | dp[i - 1][j-nums[i-1]];
                }
            }
        }
        return dp[n][sum];
    }
};

进行状态压缩
注意到dp[i][j]都是通过上一行dp[i-1][..]转移过来的,之前的数据都不会再使用了。

bool canPartition(vector<int>& nums) {
    int sum = 0, n = nums.size();
    for (int num : nums) sum += num;
    if (sum % 2 != 0) return false;
    sum = sum / 2;
    vector<bool> dp(sum + 1, false);
    // base case
    dp[0] = true;

    for (int i = 0; i < n; i++) 
        for (int j = sum; j >= 0; j--) 
            if (j - nums[i] >= 0) 
                dp[j] = dp[j] || dp[j - nums[i]];

    return dp[sum];
}

2、完全背包问题

2.1、零钱兑换1

原题链接

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

示例 1:

输入: coins = [1, 2, 5], amount = 11
输出: 3 
解释: 11 = 5 + 5 + 1

示例 2:

输入: coins = [2], amount = 3
输出: -1
 

说明:
你可以认为每种硬币的数量是无限的。


2.1.1、思路

我们可以把这个问题转化为背包问题的描述形式:

有一个背包,最大容量为amount,有一系列物品coins,每个物品的重量为coins[i],每个物品的数量无限。刚好把背包装满请问所需的最少的物品个数?

1、明确状态

由于coins数量无限,coins的面额也是题目给定的,只有目标金额会不断地向 base case 靠近,所以唯一的「状态」就是目标金额 amount。

2、明确dp数组的定义

dp(n) 的定义:输入一个目标金额 n,返回凑出目标金额 n 的最少coins数量。

3、明确base case

显然目标金额 amount 为 0 时算法返回 0,dp[0] = 0;
4、明确状态转移方程

在这里插入图片描述

2.1.2、题解
int coinChange(vector<int>& coins, int amount) {
    // 数组大小为 amount + 1,初始值也为 amount + 1
    vector<int> dp(amount + 1, amount + 1);
    // base case
    dp[0] = 0;
    // 外层 for 循环在遍历所有状态的所有取值
    for (int i = 0; i < dp.size(); i++) {
        // 内层 for 循环在求所有选择的最小值
        for (int coin : coins) {
            // 子问题无解,跳过
            if (i - coin < 0) continue;
            dp[i] = min(dp[i], 1 + dp[i - coin]);
        }
    }
    return (dp[amount] == amount + 1) ? -1 : dp[amount];
}

2.2、零钱兑换2

题链接

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。

示例 3:

输入: amount = 10, coins = [10] 
输出: 1
 

注意:

你可以假设:

0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数


2.2.1、思路

我们可以把这个问题转化为背包问题的描述形式:

有一个背包,最大容量为amount,有一系列物品coins,每个物品的重量为coins[i],每个物品的数量无限。请问有多少种方法,能够把背包恰好装满?

1、明确状态
状态就是「背包的容量」和「可选择的物品」

2、明确dp数组的定义

dp[i][j]的定义如下:

  • 若只使用前i个物品,当背包容量为j时,有dp[i][j]种方法可以装满背包。也就是若只使用coins中的前i个硬币的面值,若想凑出金额j,有dp[i][j]种凑法。

3、明确base case

dp[0][..] = 0, dp[..][0] = 1,因为如果不使用任何硬币面值,就无法凑出任何金额;如果凑出的目标金额为 0,那么“无为而治”就是唯一的一种凑法。

4、明确状态转移方程

1、如果你不把这第i个物品装入背包,也就是说你不使用coins[i]这个面值的硬币,那么凑出面额j的方法数dp[i][j]应该等于dp[i-1][j],继承之前的结果。

2、如果你把这第i个物品装入了背包,也就是说你使用coins[i]这个面值的硬币,那么dp[i][j]应该等于dp[i][j-coins[i-1]]。

for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= amount; j++)
            if (j - coins[i-1] >= 0)
                dp[i][j] = dp[i - 1][j] 
                         + dp[i][j - coins[i-1]];
            else 
                dp[i][j] = dp[i - 1][j];
    }
2.2.2、题解
class Solution {
public:
    int change(int amount, vector<int>& coins) {
         int n = coins.size();
        vector<vector<int>>dp(n+1,vector<int>(amount+1,0));
        // base case
        for (int i = 0; i <= n; i++) 
            dp[i][0] = 1;

        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= amount; j++)
                if (j - coins[i-1] >= 0)
                    dp[i][j] = dp[i - 1][j] 
                            + dp[i][j - coins[i-1]];
                else 
                    dp[i][j] = dp[i - 1][j];
        }
        return dp[n][amount];
    }
    
};

压缩状态

dp数组的转移只和dp[i][..]dp[i-1][..]有关,所以可以压缩状态,进一步降低算法的空间复杂度:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
         int n = coins.size();
        vector<int>dp(amount+1,0);
        // base case
        dp[0] = 1;

        for (int i = 0; i < n; i++)
        for (int j = 1; j <= amount; j++)
            if (j - coins[i] >= 0)
                dp[j] = dp[j] + dp[j-coins[i]];

        return dp[amount];
    }
    
};

参考

1、https://leetcode-cn.com/problems/partition-equal-subset-sum/

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
回答: LeetCode上的背包问题是指在给定一组物品和一个背包的容量的情况下,选择哪些物品放入背包,使得背包中物品的总价值最大。根据物品的选择限制,背包问题可以分为0-1背包问题完全背包问题和多重背包问题等不同类型。[2] 对于0-1背包问题,每种物品只能选择0个或1个,即要么放入背包,要么不放入。这种情况下,可以使用动态规划来解决,定义一个二维数组dp[i][j]表示前i个物品放入容量为j的背包中所获得的最大价值。通过状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])来更新dp数组,其中weight[i]表示第i个物品的重量,value[i]表示第i个物品的价值。最终,dp[n][W]即为所求的最大价值,其中n为物品的个数,W为背包的容量。[3] 完全背包问题是指每种物品可以选择任意个数,即可以重复放入背包。在解决完全背包问题时,可以将其转化为0-1背包问题来求解。具体做法是将每个物品拆分成多个重量和价值相同的物品,然后按照0-1背包问题的方法进行求解。[1] 多重背包问题是指每种物品有一定的数量限制,即每种物品可以选择0个到nums[i]个。对于多重背包问题,可以将其转化为0-1背包问题来求解。具体做法是将每个物品拆分成多个重量和价值相同的物品,然后按照0-1背包问题的方法进行求解。[1] 总结来说,背包问题是在给定一组物品和背包容量的情况下,选择合适的物品放入背包,使得背包中物品的总价值最大。根据物品的选择限制,背包问题可以分为0-1背包问题完全背包问题和多重背包问题等不同类型,可以使用动态规划的方法来解决。[2][3]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值