Caffe安装
1. 解压安装包(以caffe-master.zip为例)
unzip caffe-master.zip
2. 配置Makefile.config
cd caffe-master/
mv Makefile.config.example Makefile.config
vim Makefile.config
具体修改处:
打开: USE_CUDNN := 1
打开: WITH_PYTHON_LAYER := 1
配置好和anaconda所有相关的项目:(包括ANACONDA_HOME
、PYTHON_INCLUDE
、和PYTHON_LIB
)
去掉此前(但不包括这行)的内容:CUDA_ARCH := -gencode arch=compute_30,code=sm_30
修改 : BLAS := open
修改: INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/local/hdf5/include
修改: LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/local/hdf5/lib
保持注释: USE_OPENCV:=0、OPENCV_VERSION:=3 (即使装的是opencv4.0.1)
指定cuda地址: /usr/local/cuda-9.0
3. 编译Caffe
sudo make -j32
4. 跑测试样例
这里如果开的进程太多可能会报错:
sudo make runtest -j4
5. 编译PyCaffe
sudo make pycaffe -j16
6. Python导入测试
测试python脚本是否能导入Caffe:
import sys
sys.path.insert(0, "/path_to_you_caffe/caffe-master/python")
import caffe
查看Caffe版本:
print(caffe.__version__)
查看Caffe路径:
print(caffe.__path__)
补充
1. 安装caffe不需要 sudo make install 的原因
因为Caffe不需要安装到系统中去,也说明Caffe类似于一个可迁移的安装包。
2. 不同版本的Caffe区别
- BVLC版caffe:
是原生的caffe。基于C++和 CUDA C++语言,并提供了Python和Matlab接口,只能跑单线程。 - Intel版caffe:
即caffe-intel,是优化后的caffe。整合了Intel Math Kernel Library(Intel MKL) 2017,并对 Advanced Vector Extensions(AVX)-2 和AVX-512进行了优化,能够支持 Intel Xeon和Intel Xeon Phi处理器。因此,基于Intel优化的Caffe框架除了包含BVLC Caffe的所有优点外,还能在Intel结构上有效运行,并能在许多节点进行分布式训练。
可能遇到的报错
libopencv_highgui.so:undefined reference to ‘TIFFIsTiled@LIBTIFF_4.0’
- 解法一:
conda uninstall libtiff
- 解法二:
服务器上如果不能用conda uninstall
的话,手动把$ANACONDA_HOME/lib/libtiff.so*
删干净也行。