回归loss
比较参见的有L1、L2和Smooth L1。罗列如下:
名称 / 别称 | 公式 | 求导 | 特性 |
---|---|---|---|
L1 / MAE | 1 N ∑ i = 1 N ∣ y − y ^ ∣ \frac{1}{N}\sum_{i=1}^N\mid{y}-\hat{y}\mid N1∑i=1N∣y−y^∣ | ± 1 N ∑ i = 1 N y ^ ′ \pm \frac{1}{N}\sum_{i=1}^N {\hat{y}^{\prime}} ±N1∑i=1Ny^′ | 在0点附近梯度依然为-1或1,导致来回振荡,不利于收敛 |
L2 / MSE(均方误差) | 1 N ∑ i = 1 N ⟮ y − y ^ ⟯ 2 \frac{1}{N}\sum_{i=1}^N{\lgroup{y}-\hat{y}\rgroup}^2 N1∑i=1N⟮y−y^⟯2 | 2 N ∑ i = 1 N ⟮ y − y ^ ⟯ ⋅ y ^ ′ \frac{2}{N}\sum_{i=1}^N{\lgroup{y}-\hat{y}\rgroup} \cdot {\hat{y}^{\prime}} N2∑i=1N⟮y−y^⟯⋅y^′ | 受离群点影响大,训练时容易跑飞 |
Smooth L1 | 如下 | 如下 | 兼顾了二者的优点,同时回避了二者的缺点 |
Smooth L1 公式
{ 0.5 x 2 , ∣ x ∣ ≤ 1 ∣ x ∣ − 0.5 , ∣ x ∣ > 1 \left\{\begin{aligned} &0.5x^{2}& , &\left| x\right|\leq1 \\ &|x|-0.5& , &\left| x\right|>1 \end{aligned}\right. {0.5x2∣x∣−0.5,,∣x∣≤1∣x∣>1
Smooth L1 求导
{ x , ∣ x ∣ ≤ 1 − 1 , x < − 1 1 , x > 1 \left\{\begin{aligned} &x& , & \left| x\right| \leq1 \\ &-1& , &x < -1 \\ & 1& , &x > 1 \end{aligned}\right. ⎩ ⎨ ⎧x−11,,,∣x∣≤1x<−1x>1