【深度学习】梯度消失 / 梯度弥散 (gradient diffusion)

本文探讨了深度学习中常见的梯度弥散问题,解释了其产生的原因,并介绍了通过合理参数初始化、ReLU激活函数及批量归一化等手段缓解该问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Introduction

从文章《梯度弥散》摘来的一段话:

梯度下降法(以及相关的L-BFGS算法等)在使用随机初始化权重的深度网络上效果不好的技术原因是:梯度会变得非常小。具体而言,当使用反向传播方法计算导数的时候,随着网络的深度的增加,反向传播的梯度(从输出层到网络的最初几层)的幅度值会急剧地减小。结果就造成了整体的损失函数相对于最初几层的权重的导数非常小。这样,当使用梯度下降法的时候,最初几层的权重变化非常缓慢,以至于它们不能够从样本中进行有效的学习。这种问题通常被称为“梯度的弥散”.

Summary

  • 最早期的神经网络往往都只有两三层,最大的瓶颈就在于梯度弥散
  • 2012年有了 合理的参数初始化 & 提出 Relu激活函数 后,成功 **“ 缓解 ”**了该问题,深度的天花板第一次被打破;
  • 但网络更深的时候,梯度弥散就会死灰复燃。这时候就需要 identity mapping 来第二次打破深度的天花板;
  • BN因为在前馈的时候缩放了输入空间,而前馈时的输入空间又直接影响了反馈计算时的梯度状况。所以说,BN其实帮助减缓了梯度问题。

[1] 深度学习: Batch Normalization (归一化)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值