人工智能考试复习[华理]

人工智能考试复习

题型 填空20+选择16+计算40+综合24


计算 命题公式

关键公式:推出关系 A → B    ⟺    ¬ A ∨ B A \rightarrow B \iff \neg A \vee B AB¬AB

计算 谓词逻辑

关键公式:量词转换 ¬ ∃ x f ( x )    ⟺    ∀ x ¬ f ( x ) ¬∃xf(x) \iff ∀x¬f(x) ¬∃xf(x)x¬f(x)

综合 推理树
  1. 路径和节点:路径值是经验,节点值是现在提供的

    1. 路径值 CF(H,E) E的前提下,H 的可能性
    2. 节点值 CF(E): 证据本身的可能性
  2. 与树和和树:和树父节点在连接处有小弧线。

    1. 与树:E=and(Ei) => CF(E)=min(CF(Ei))
    2. 或树:E=or(Ei) => CF(E)=max(CF(Ei))
  3. 根据路径和子节点确定性计算父节点的确定性:

    CF(H) = CF(H,E) × max { 0,CF(E)}

  4. 对于结论的确定性的合成的特殊算法

    C F 1 , 2 ( H ) = { C F 1 ( H ) + C F 2 ( H ) − 乘起来 ⩾ 0 C F 1 ( H ) + C F 2 ( H ) + 乘起来 < 0 C F 1 ( H ) + C F 2 ( H ) 1 − min ⁡ ( ∣ C F 1 ( H ) ∣ , ∣ C F 2 ( H ) ∣ ) 异号 CF_{1,2}(H)=\begin{cases} CF_1(H) +CF_2(H)- 乘起来 & ⩾ 0\\ CF_1(H) +CF_2(H)+ 乘起来 & <0\\ \dfrac{CF_1(H)+CF_2(H)}{1-\min(|CF_1(H)|,|CF_2(H)|)} & 异号 \end{cases} CF1,2(H)= CF1(H)+CF2(H)乘起来CF1(H)+CF2(H)+乘起来1min(CF1(H),CF2(H))CF1(H)+CF2(H)0<0异号

计算 贴近度三步走

贴近度:点是小中大,星是大中小,1/2(点-星+1)

  1. A ∙ B = ∨ U ( μ A ( u i ) ∧ μ B ( u i ) ) A \bullet B = \mathop \vee \limits_U (\mu A(u_i) \wedge \mu B(u_i)) AB=U(μA(ui)μB(ui))
  2. A ∗ B = ∧ U ( μ A ( u i ) ∨ μ B ( u i ) ) A * B = \mathop \wedge \limits_U (\mu A(u_i) \vee \mu B(u_i)) AB=U(μA(ui)μB(ui))
  3. ( A , B ) = 1 2 [ A ∙ B − A ∗ B + 1 ] (A,B) = \frac{1}{2}[A \bullet B - A * B+1] (A,B)=21[ABAB+1]
计算 模糊关系矩阵和推理

模糊矩阵做乘法,乘法小,加法大

模糊关系矩阵计算(⭕):正常乘法,* 是min,+ 重载为 max

  1. I F    x    i s    A    T H E N    y    i s    B ( λ ) \mathrm{IF \; x \; is \; A \; THEN \; y \; is \; B(\lambda)} IFxisATHENyisB(λ)

  2. 首先计算 A A A B B B之间的模糊关系 R R R= A ∘ B A\circ B AB

  3. 如果已知证据是 x    i s    A ′ x \; is \; A' xisA ( A , A ′ ) ≥ λ (A,A')\geq\lambda (A,A)λ,则有结论 y    i s    B ′ y \; is \; B' yisB,其中 B ′ = A ′ ∘ R B' = A'\circ R B=AR

    R m ( i , j ) = ( μ A ( u i ) ∧ μ B ( v j ) ) ∨ ( 1 − μ A ( u i ) ) R_m(i,j) = (\mu_A(u_i)\wedge\mu_B(v_j))\vee(1-\mu_A(u_i)) Rm(i,j)=(μA(ui)μB(vj))(1μA(ui))

    R a ( i , j ) = 1 ∧ ( 1 − μ A ( u i ) + μ B ( v j ) ) R_a(i,j) = 1\wedge(1-\mu_A(u_i)+\mu_B(v_j)) Ra(i,j)=1(1μA(ui)+μB(vj))

  4. 已知证据为 x    i s    A ′ x \; is \;A' xisA ( A , A ′ ) > λ (A,A')>\lambda (A,A)>λ,则可由 R m R_m Rm R a R_a Ra计算得到 B m ′ B_m' Bm B a ′ B_a' Ba

    B m ′ = A ′ ∘ R m = A ′ ∘ [ ( A × B ) ⋃ ( ¬ A × V ) ] B_m' = A'\circ R_m = A'\circ[(A\times B)\bigcup(\neg A\times V)] Bm=ARm=A[(A×B)(¬A×V)]

    B a ′ = A ′ ∘ R a = A ′ ∘ [ ( ¬ A × V ) ⊕ ( U × B ) ] B_a' = A'\circ R_a = A'\circ[(\neg A\times V)\oplus(U\times B)] Ba=ARa=A[(¬A×V)(U×B)]

  5. 模糊决策的三种方法:

    1. 最大隶属度法:选择隶属度最大
    2. 加权平均判决法:对每个模糊集的隶属度进行加权平均
    3. 中位数法:找到使得隶属度等于0.5的所有元素,然后计算这些元素的平均值,这个平均值就是模糊集的中心
计算 缺省理论

除了企鹅以外,大多数的鸟都会飞: B I R D ( x ) : M ( C A N − F L Y ( x ) ∧ ¬ P e n g u i n ( x ) ) C A N − F L Y ( x ) \frac{BIRD(x):M(CAN - FLY(x) \wedge ¬ Penguin(x))}{CAN - FLY(x)} CANFLY(x)BIRD(x):M(CANFLY(x)¬Penguin(x))

除了鹦鹉以外,一般动物都不会讲话: A N I M A L ( x ) : M ( ¬ S P E A K ( x ) ∧ ¬ P A R R O T ( x ) ) ¬ S P E A K ( x ) \frac{ANIMAL(x):M(¬ SPEAK(x) \wedge ¬ PARROT(x))}{¬ SPEAK(x)} ¬SPEAK(x)ANIMAL(x):M(¬SPEAK(x)¬PARROT(x))

计算 TMS原理
  1. 每得到一个命题,就按照 序号+命题+SL(IN_List)(OUT_List)+IN/OUT来写 IN是真 OUT是假
  2. 如果出现逻辑问题,就把冲突的节点放到新节点的 IN_List 里
  3. 然后对IN依次取OUT,OUT依次取IN,看是否解决冲突
计算 Bayes推理
  1. O和P的对应关系+ O=P/1-P P=O/O+1

  2. 证据确定: P ( R ∣ E ) = L S ∗ P ( R ) ( L S − 1 ) ∗ P ( R ) + 1 P(R|E)=\frac{LS *P(R)}{(LS-1)*P(R)+1} P(RE)=(LS1)P(R)+1LSP(R) pre=lsxp/(ls-1)xp+1

  3. 证据确定不: P ( R ∣ ¬ E ) = L N ∗ P ( R ) ( L N − 1 ) ∗ P ( R ) + 1 P(R|¬ E)=\frac{LN *P(R)}{(LN-1)*P(R)+1} P(R∣¬E)=(LN1)P(R)+1LNP(R)

  4. 证据不确定时: P ( R ∣ S ) = P ( R ∣ E ) × P ( E ∣ S ) + P ( R ∣ ﹁ E ) × P ( ﹁ E ∣ S ) P(R|S)=P(R|E) ×P(E|S)+P(R|﹁E) × P(﹁E|S) P(RS)=P(RE)×P(ES)+P(R∣﹁E)×P(ES)

  5. 对于节点证据的传递:

    P ( R ∣ S ) = { P ( R ∣ ﹁ E ) + ( P ( R ) − P ( R ∣ E ) ) × ( 0.2 C ( E ∣ S ) + 1 ) C ( C ∣ S ) < = 0 P ( R ) + ( P ( R ∣ E ) − P ( R ) ) × ( 0.2 C ( E ∣ S ) ) C ( C ∣ S ) > 0 P(R|S)=\begin{cases} P(R|﹁E)+(P(R)-P(R|E))×(0.2C(E|S)+1) & C(C|S)<=0\\ P(R)+(P(R|E)-P(R))×(0.2C(E|S)) & C(C|S)>0\\ \end{cases} P(RS)={P(R∣﹁E)+(P(R)P(RE))×(0.2C(ES)+1)P(R)+(P(RE)P(R))×(0.2C(ES))C(CS)<=0C(CS)>0

  6. R的后验几率计算方法: O ( R ∣ S 1 S 2 . . S n ) = ( ∑ O ( R i ) / O ( R ) ) ∗ O ( R ) O(R|S_1S_2..S_n)=(\sum O(Ri)/O(R))*O(R) O(RS1S2..Sn)=(O(Ri)/O(R))O(R)

计算 熵和最佳属性的计算
  1. 信息熵公式: E ( X ) = − i = 1 ∑ n p ( x i ) l o g 2 p ( x i ) E(X)=− i=1 ∑ n p(x i )log 2 p(x i ) E(X)=i=1np(xi)log2p(xi)
  2. 条件熵公式: E ( Y ∣ X ) = i = 1 ∑ n p ( x i ) E ( Y ∣ X = x i ) E(Y∣X)= i=1 ∑ n p(x i )E(Y∣X=x i ) E(YX)=i=1np(xi)E(YX=xi)
  3. 信息增益计算: G a i n ( Y ∣ X ) = E ( Y ) − E ( Y ∣ X ) Gain(Y∣X)=E(Y)−E(Y∣X) Gain(YX)=E(Y)E(YX) 消除不确定性的多少
综合 ID3算法
  1. 选择最佳特征:ID3算法从根节点开始,对每个可能的特征计算信息增益,选择信息增益最大的特征作为当前节点的分裂特征。
  2. 分裂节点:使用选定的特征将数据集分成子集。每个特征的取值对应一个子节点。
  3. 重复过程:对每个新产生的子节点重复上述过程,直到满足停止条件。停止条件可以是所有的数据都属于同一类别,或者没有更多的特征可以用来分裂,或者达到了预定的树的最大深度。
  4. 生成决策树:最终,这个递归过程会生成一个决策树,树的每个内部节点代表一个特征,每个分支代表一个特征取值,每个叶节点代表一个类别标签。
计算 实例和假设空间
  1. 实例空间 = ∏ i = 1 n m i      搜索空间 = 1 + ∏ j = 1 n ( m j + 1 ) 实例空间=\prod_{i = 1}^n {m_i} \ \ \ \ \ 搜索空间=1+\prod_{j = 1}^n {(m_j + 1)} 实例空间=i=1nmi     搜索空间=1+j=1n(mj+1)
计算 FIND-S

遇到没的变有的 ,遇到有的变问号

  1. 首先初始化 < Φ , Φ , Φ , . . . Φ > <\Phi,\Phi,\Phi,...\Phi> <Φ,Φ,Φ,...Φ>

  2. 遍历训练集,直到所有正例都至少与假设匹配一次。如果有新的正例与当前假设不匹配,更新假设以包含这个正例。

    1. 假如只有两种可能,改为 ?
    2. 有更多选择,改为 or,直到所有选择都遇到过
  3. 在遍历完整个训练集后,输出最终的假设。这个假设应该与所有正例匹配,但可能与一些反例匹配。

计算 遗传算法

选择-复制-交叉-变异 交叉率算的是个体数,变异率算的是位数

  • 选择(Selection)轮盘赌和锦标赛选择法

    选择操作的目的是从当前种群中选择出较优的个体,以用于后续的遗传操作。选择的依据通常是适应度(Fitness),适应度高的个体有更大的机会被选中。选择的方法有多种,如轮盘赌选择、锦标赛选择等。

    • 轮盘赌选择

      1. 计算每个个体的适应度,选择概率(根据适应度占百分比)和累计概率(前面的概率+自己的选择概率)。
      2. 生成一个0到1之间的随机数 𝑅。
      3. 从第一个个体开始累加它们的选择概率,直到累加值大于 𝑅,选择当前累加的个体。
    • 锦标赛选择

      1. 随机选择一定数量的个体进行比较。
      2. 从这些个体中选择适应度最高的一个。
  • 复制(Replication)直接将选中的个体复制到下一代种群

    • 复制操作通常与选择操作结合使用,即直接将选中的个体复制到下一代种群中。
  • 交叉(Crossover)交叉率算的是个体数

    • 交叉操作模拟生物的繁殖过程,通过交换两个个体的部分基因来产生新的个体。常见的交叉方法有单点交叉、多点交叉和均匀交叉。

    • 单点交叉

      1. 选择一个交叉点。
      2. 交换父代两个个体在交叉点之后的基因段,产生子代个体。
  • 变异(Mutation)变异率算的是位数

    • 变异操作是为了增加种群的多样性,防止算法过早收敛到局部最优解。变异通常是以一个很小的概率随机改变个体基因的值。

    • 变异操作

      1. 对于个体的每一个基因,以一个较小的概率 𝑝𝑚pm 决定是否进行变异。
      2. 如果决定变异,则随机选择该基因的一个新的值(通常在基因的取值范围内)。
综合 感知机的实现
  1. 初始化权重:首先,为每个输入分配一个随机权重(包括偏置权重),这些权重将会在训练过程中调整。

  2. 激活函数:使用阶跃函数作为激活函数,数学上可以表示为:

    f ( x ) = { 1 if  w 0 + w 1 x 1 + w 2 x 2 + . . . > 0 − 1 otherwise f(x) = \begin{cases} 1 & \text{if } w_0 + w_1x_1 + w_2x_2 +... > 0 \\ -1 & \text{otherwise} \end{cases} f(x)={11if w0+w1x1+w2x2+...>0otherwise

  3. 训练过程:通过训练数据来调整权重,直到找到能正确分类训练数据的权重配置。

    • 前向传播:对于每个训练样本,计算感知机的输出。这通常是通过将输入与权重相乘并加上偏置,然后通过激活函数来完成的。
    • 计算误差:对于每个训练样本,计算感知机输出与实际标签之间的误差。对于二分类问题,误差可以简单地表示为实际标签与预测标签之差。
    • 更新权重:如果感知机对一个样本分类错误(即误差不为零),则调整权重。权重的更新规则是:对于每个输入特征,将其权重增加(如果误差为正)或减少(如果误差为负)该特征的值乘以一个学习率(learning rate)。
      其中,𝑤𝑖 是第 𝑖 个特征的权重,𝛼 是学习率,𝑥𝑖 是第 𝑖 个特征的值。
    • 重复步骤:使用更新后的权重,对下一个训练样本进行分类,并重复步骤2到4,直到所有训练样本都被正确分类,或者达到预定的迭代次数。
  4. 多分类问题:如果需要解决多分类问题,可以通过一对多(One-vs-All)的方法来扩展感知机,即为每个类别训练一个感知机,并将输入指派给得分最高的感知机所代表的类别。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值