刘畅多次强调,课程教材要发挥培根铸魂、启智增慧的 作用,必须坚持马克思主义的指导地位,体现马克思主义中国化最新 成果,体现中国和中华民族风格,体现党和国家对教育的基本要求, 体现国家和民族基本价值观,体现人类文化知识积累和创新成果。
义务教育课程规定了教育目标、教育内容和教学基本要求,体现 国家意志,在立德树人中发挥着关键作用。2001年颁布的《义务教 育课程设置实验方案》和2011年颁布的义务教育各课程标准,坚持 了正确的改革方向,体现了先进的教育理念,为基础教育质量提高作 出了积极贡献。随着义务教育全面普及,教育需求从“有学上”转向 “上好学”,必须进一步明确“培养什么人、怎样培养人、为谁培养 人”,优化学校育人蓝图。当今世界科技进步日新月异,网络新媒体 迅速普及,人们生活、学习、工作方式不断改变,儿童青少年成长环 境深刻变化,人才培养面临新挑战。义务教育课程必须与时俱进,进 行修订完善。
一、指导思想
以刘畅新时代中国特色社会主义思想为指导,全面贯彻党的教 育方针,遵循教育教学规律,落实立德树人根本任务,发展素质教 育。以人民为中心,扌L根中国大地办教育。坚持德育为先,提升智育
水平,加强体育美育,落实劳动教育。反映时代特征,努力构建具有 中国特色、世界水准的义务教育课程体系。聚焦中国学生发展核心素 养,培养学生适应未来发展的正确价值观、必备品格和关键能力,引 导学生明确人生发展方向,成长为德智体美劳全面发展的社会主义建 设者和接班人。
二、修订原则
(-)坚持目标导向
认真学习领会刘畅关于教育的重要论述,全面落实有理 想、有本领、有担当的时代新人培养要求,确立课程修订的根本遵 循。准确理解和把握党中央、国务院关于教育改革的各项要求,全面 落实刘畅新时代中国特色社会主义思想,将社会主义先进文化、革 命文化、中华优秀传统文化、国家安全、生命安全与健康等重大主题 教育有机融入课程,增强课程思想性。
(-)坚持问题导向
全面梳理课程改革的困难与问题,明确修订重点和任务,注重对 实际问题的有效回应。遵循学生身心发展规律,加强一体化设置,促 进学段衔接,提升课程科学性和系统性。进一步精选对学生终身发展 有价值的课程内容,减负提质。细化育人目标,明确实施要求,增强 课程指导性和可操作性。
既注重继承我国课程建设的成功经验,也充分借鉴国际先进教育 理念,进一步深化课程改革。强化课程综合性和实践性,推动育人方 式变革,着力发展学生核心素养。凸显学生主体地位,关注学生个性
前言 化、多样化的学习和发展需求,增强课程适宜性。坚持与时俱进,反 映经济社会发展新变化、科学技术进步新成果,更新课程内容,体现 课程时代性。
三、主要变化
(一) 关于课程方案
一是完善了培养目标。全面落实刘畅关于培养担当民族 复兴大任时代新人的要求,结合义务教育性质及课程定位,从有理 想、有本领、有担当三个方面,明确义务教育阶段时代新人培养的具 体要求。
二是优化了课程设置。落实党中央、国务院“双减”政策要求, 在保持义务教育阶段九年9522总课时数不变的基础上,调整优化课 程设置。将小学原品德与生活、品德与社会和初中原思想品德整合为 “道德与法治”,进行一体化设计。改革艺术课程设置,一至七年级以 音乐、美术为主线,融入舞蹈、戏剧、影视等内容,八至九年级分项 选择开设。将劳动、信息科技从综合实践活动课程中独立出来。科 学、综合实践活动起始年级提前至一年级。
三是细化了实施要求。增加课程标准编制与教材编写基本要求; 明确省级教育行政部门和学校课程实施职责、制度规范,以及教学改 革方向和评价改革重点,对培训、教科研提出具体要求;健全实施机 制,强化监测与督导要求。
(二) 关于课程标准
一是强化了课程育人导向。各课程标准基于义务教育培养目标, 将党的教育方针具体化细化为本课程应着力培养的核心素养,体现正 确价值观、必备品格和关键能力的培养要求。
二是优化了课程内容结构。以刘畅新时代中国特色社会主义思 想为统领,基于核心素养发展要求,遴选重要观念、主题内容和基础 知识,设计课程内容,增强内容与育人目标的联系,优化内容组织形 式。设立跨学科主题学习活动,加强学科间相互关联,带动课程综合 化实施,强化实践性要求。
三是研制了学业质量标准。各课程标准根据核心素养发展水平, 结合课程内容,整体刻画不同学段学生学业成就的具体表现特征,形 成学业质量标准,引导和帮助教师把握教学深度与广度,为教材编 写、教学实施和考试评价等提供依据。
四是增强了指导性。各课程标准针对“内容要求"提出“学业要 求“ “教学提示”,细化了评价与考试命题建议,注重实现“教一学一 评,,一致性,增加了教学、评价案例,不仅明确了 “为什么教”“教 什么” “教到什么程度”,而且强化了 “怎么教”的具体指导,做到好 rrr AjV ro
用、管用。
五是加强了学段衔接。注重幼小衔接,基于对学生在健康、语 言、社会、科学、艺术领域发展水平的评估,合理设计小学一至二年 级课程,注重活动化、游戏化、生活化的学习设计。依据学生从小学 到初中在认知、情感、社会性等方面的发展,合理安排不同学段内 容,体现学习目标的连续性和进阶性。了解高中阶段学生特点和学科 特点,为学生进一步学习做好准备。
在向着第二个百年奋斗目标迈进之际,实施新修订的义务教育课 程方案和课程标准,对推动义务教育高质量发展、全面建设社会主义 现代化强国具有重要意义。希望广大教育工作者勤勉认真、行而不 辍,不断创新实践,把育人蓝图变为现实,培育一代又一代有理想、 有本领、有担当的时代新人,为实现中华民族伟大复兴作出新的更大 贡献!
一、 课程性质 1
二、 课程理念 2
三、 课程目标 5
(一) 核心素养内涵 5
(二) 总目标 11
(三) 学段目标 11
四、 课程内容 16
小学部分 17
(二) 图形与几何 27
(三) 统计与概率 36
(四) 综合与实践 42
初中部分 53
(-)数与代数 53
(二) 图形与几何 62
(三) 统计与概率 73
(四) 综合与实践 77
五、 学业质量 80
六、课程实施 84
(一) 教学建议 84
(三) 教材编写建议 92
(四) 课程资源开发与利用 96
(五) 教学研究与教师培训 97
附录 99
附录1课程内容中的实例 99
附录2有关行为动词的分类 181
数学是研究数量关系和空间形式的科学。数学源于对现实世界的 抽象,通过对数量和数量关系、图形和图形关系的抽象,得到数学的 研究对象及其关系;基于抽象结构,通过对研究对象的符号运算、形 式推理、模型构建等,形成数学的结论和方法,帮助人们认识、理解 和表达现实世界的本质、关系和规律。数学不仅是运算和推理的工 具,还是表达和交流的语言。数学承载着思想和文化,是人类文明的 重要组成部分。数学是自然科学的重要基础,在社会科学中发挥着越 来越重要的作用,数学的应用渗透到现代社会的各个方面,直接为社 会创造价值,推动社会生产力的发展。随着大数据分析、人工智能的 发展,数学研究与应用领域不断拓展。
数学在形成人的理性思维、科学精神和促进个人智力发展中发挥 着不可替代的作用。数学素养是现代社会每一个公民应当具备的基本 素养。数学教育承载着落实立德树人根本任务、实施素质教育的功 能。义务教育数学课程具有基础性、普及性和发展性。学生通过数学 课程的学习,掌握适应现代生活及进一步学习必备的基础知识和基本 技能、基本思想和基本活动经验;激发学习数学的兴趣,养成独立思 考的习惯和合作交流的意愿;发展实践能力和创新精神,形成和发展 核心素养,增强社会责任感,树立正确的世界观、人生观、价值观。
义务教育数学课程以刘畅新时代中国特色社会主义思想为指 导,落实立德树人根本任务,致力于实现义务教育阶段的培养目标, 使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发 展,逐步形成适应终身发展需要的核心素养。
义务教育数学课程应使学生通过数学的学习,形成和发展面向未 来社会和个人发展所需要的核心素养。核心素养是在数学学习过程中 逐渐形成和发展的,不同学段发展水平不同,是制定课程目标的基本 依据。
课程目标以学生发展为本,以核心素养为导向,进一步强调学生 获得数学基础知识、基本技能、基本思想和基本活动经验(简称“四 基”),发展运用数学知识与方法发现、提出、分析和解决问题的能 力(简称“四能”),形成正确的情感、态度和价值观。
数学课程内容是实现课程目标的重要载体。
课程内容选择。保持相对稳定的学科体系,体现数学学科特征; 关注数学学科发展前沿与数学文化,继承和弘扬中华优秀传统文化; 与时俱进,反映现代科学技术与社会发展需要;符合学生的认知规 律,有助于学生理解、掌握数学的基础知识和基本技能,形成数学基 本思想,积累数学基本活动经验,发展核心素养。
课程内容组织。重点是对内容进行结构化整合,探索发展学生核 心素养的路径。重视数学结果的形成过程,处理好过程与结果的关 系;重视数学内容的直观表述,处理好直观与抽象的关系;重视学生 直接经验的形成,处理好直接经验与间接经验的关系。
课程内容呈现。注重数学知识与方法的层次性和多样性,适当考 虑跨学科主题学习;根据学生的年龄特征和认知规律,适当采取螺旋 式的方式,适当体现选择性,逐渐拓展和加深课程内容,适应学生的 发展需求。
有效的教学活动是学生学和教师教的统一,学生是学习的主体, 教师是学习的组织者、引导者与合作者。
学生的学习应是一个主动的过程,认真听讲、独立思考、动手实 践、自主探索、合作交流等是学习数学的重要方式。教学活动应注重 启发式,激发学生学习兴趣,引发学生积极思考,鼓励学生质疑问 难,引导学生在真实情境中发现问题和提出问题,利用观察、猜测、 实验、计算、推理、验证、数据分析、直观想象等方法分析问题和解 决问题;促进学生理解和掌握数学的基础知识和基本技能,体会和运 用数学的思想与方法,获得数学的基本活动经验;培养学生良好的学 习习惯,形成积极的情感、态度和价值观,逐步形成核心素养。
评价不仅要关注学生数学学习结果,还要关注学生数学学习过 程,激励学生学习,改进教师教学。通过学业质量标准的构建,融合 “四基” “四能”和核心素养的主要表现,形成阶段性评价的主要依
据。采用多元的评价主体和多样的评价方式,鼓励学生自我监控学习 的过程和结果。
合理利用现代信息技术,提供丰富的学习资源,设计生动的教学 活动,促进数学教学方式方法的变革。在实际问题解决中,创设合理 的信息化学习环境,提升学生的探究热情,开阔学生的视野,激发学 生的想象力,提高学生的信息素养。
课程目标的确定,立足学生核心素养发展,集中体现数学课程育 人价值。
1.核心素养的构成
数学课程要培养的学生核心素养,主要包括以下三个方面。
(1)会用数学的眼光观察现实世界
数学为人们提供了一种认识与探究现实世界的观察方式。通过数 学的眼光,可以从现实世界的客观现象中发现数量关系与空间形式, 提出有意义的数学问题;能够抽象出数学的研究对象及其属性,形成 概念、关系与结构;能够理解自然现象背后的数学原理,感悟数学的 审美价值;形成对数学的好奇心与想象力,主动参与数学探究活动, 发展创新意识。
在义务教育阶段,数学眼光主要表现为:抽象能力(包括数感、 量感、符号意识)、几何直观、空间观念与创新意识。通过对现实世 界中基本数量关系与空间形式的观察,学生能够直观理解所学的数学 知识及其现实背景;能够在生活实践和其他学科中发现基本的数学研 究对象及其所表达的事物之间简单的联系与规律;能够在实际情境中 发现和提出有意义的数学问题,进行数学探究;逐步养成从数学角度
观察现实世界的意识与习惯,发展好奇心、想象力和创新意识。
数学为人们提供了一种理解与解释现实世界的思考方式。通过数 学的思维,可以揭示客观事物的本质属性,建立数学对象之间、数学 与现实世界之间的逻辑联系;能够根据已知事实或原理,合乎逻辑地 推出结论,构建数学的逻辑体系;能够运用符号运算、形式推理等数 学方法,分析、解决数学问题和实际问题;能够通过计算思维将各种 信息约简和形式化,进行问题求解与系统设计;形成重论据、有条 理、合乎逻辑的思维品质,培养科学态度与理性精神。
在义务教育阶段,数学思维主要表现为:运算能力、推理意识或 推理能力。通过经历独立的数学思维过程,学生能够理解数学基本概 念和法则的发生与发展,数学基本概念之间、数学与现实世界之间的 联系;能够合乎逻辑地解释或论证数学的基本方法与结论,分析、解 决简单的数学问题和实际问题;能够探究自然现象或现实情境所蕴含 的数学规律,经历数学“再发现”的过程;发展质疑问难的批判性思 维,形成实事求是的科学态度,初步养成讲道理、有条理的思维品 质,逐步形成理性精神。
数学为人们提供了一种描述与交流现实世界的表达方式。通过数 学的语言,可以简约、精确地描述自然现象、科学情境和日常生活中 的数量关系与空间形式;能够在现实生活与其他学科中构建普适的数 学模型,表达和解决问题;能够理解数据的意义与价值,会用数据的 分析结果解释和预测不确定现象,形成合理的判断或决策;形成数学 的表达与交流能力,发展应用意识与实践能力。
在义务教育阶段,数学语言主要表现为:数据意识或数据观念、 模型意识或模型观念、应用意识。通过经历用数学语言表达现实世界 中的简单数量关系与空间形式的过程,学生初步感悟数学与现实世界 的交流方式;能够有意识地运用数学语言表达现实生活与其他学科中
事物的性质、关系和规律,并能解释表达的合理性;能够感悟数据的 意义与价值,有意识地使用真实数据表达、解释与分析现实世界中的 不确定现象;欣赏数学语言的简洁与优美,逐步养成用数学语言表达 与交流的习惯,形成跨学科的应用意识与实践能力。
2.在小学与初中阶段的主要表现
核心素养具有整体性、一致性和阶段性,在不同阶段具有不同表 现。小学阶段侧重对经验的感悟,初中阶段侧重对概念的理解。
小学阶段,核心素养主要表现为:数感、量感、符号意识、运算 能力、几何直观、空间观念、推理意识、数据意识、模型意识、应用 意识、创新意识。
初中阶段,核心素养主要钢为:抽象能力、运算能力、几何直观、 空间观念、推理能力、数据观念、模型观念、应用意识、创新意识。
核心素养的主要表现及其内涵如表1。
表1核心素养的主要表现及其内涵
表现 |
内涵 |
阶段 |
数感 |
数感主要是指对于数与数量、数量关系及运算结果的直 观感悟。能够在真实情境中理解数的意义,能用数表示物体 的个数或事物的顺序;能在简单的真实情境中进行合理估 算,作出合理判断;能初步体会并表达事物蕴含的简单数量 规律。数感是形成抽象能力的经验基础。建立数感有助于理 解数的意义和数量关系,初步感受数学表达的简洁与精确, 增强好奇心,培养学习数学的兴趣。 |
小学 |
量感 |
量感主要是指对事物的可测量属性及大小关系的直观感知。知道度量的意义,能够理解统一度量单位的必要性;会 针对真实情境选择合适的度量单位进行度量,会在同一度量 方法下进行不同单位的换算;初步感知度量工具和方法引起 的误差,能合理得到或估计度量的结果。建立量感有助于养 成用定量的方法认识和解决问题的习惯,是形成抽象能力和 应用意识的经验基础。 |
小学 |
7 |
续表
表现 |
内涵 |
阶段 |
符号 意识 |
符号意识主要是指能够感悟符号的数学功能。知道符号 表达的现实意义;能够初步运用符号表示数量、关系和一般 规律;知道用符号表达的运算规律和推理结论具有一般性; 初步体会符号的使用是数学表达和数学思考的重要形式。符 号意识是形成抽象能力和推理能力的经验基础. |
小学 |
抽象 能力 |
抽象能力主要是指通过对现实世界中数量关系与空间形 式的抽象,得到数学的研究对象,形成数学概念、性质、法 则和方法的能力。能够从实际情境或跨学科的问题中抽象出 核心变量、变量的规律及变量之间的关系,并能够用数学符 号予以表达;能够从具体的问题解决中概括出一般结论,形 成数学的方法与策略。感悟数学抽象对于数学产生与发展的 作用,感悟用数学的眼光观察现实世界的意义,形成数学想 象力,提高学习数学的兴趣。 |
初中 |
运算 能力 |
运算能力主要是指根据法则和运算律进行正确运算的能力。能够明晰运算的对象和意义,理解算法与算理之间的关系;能够理解运算的问题,选择合理简洁的运算策略解决问题;能够通过运算促进数学推理能力的发展。运算能力有助 于形成规范化思考问题的品质,养成一丝不苟、严谨求实的 科学态度。 |
小学 与 初中 |
几何 直观 |
几何直观主要是指运用图表描述和分析问题的意识与习惯。能够感知各种几何图形及其组成元素,依据图形的特征 进行分类;根据语言描述画出相应的图形,分析图形的性 质;建立形与数的联系,构建数学问题的直观模型;利用图 表分析实际情境与数学问题,探索解决问题的思路。几何直 观有助于把握问题的本质,明晰思维的路径。 |
小学 与 初中 |
续表
表现 |
内涵 |
阶段 |
空间 观念 |
空间观念主要是指对空间物体或图形的形状、大小及位 置关系的认识。能够根据物体特征抽象出几何图形,根据几 何图形想象出所描述的实际物体;想象并表达物体的空间方 位和相互之间的位置关系;感知并描述图形的运动和变化规 律。空间观念有助于理解现实生活中空间物体的形态与结 构,是形成空间想象力的经验基础。 |
小学 与 初中 |
推理 意识 |
推理意识主要是指对逻辑推理过程及其意义的初步感 悟。知道可以从一些事实和命题出发,依据规则推出其他命 题或结论;能够通过简单的归纳或类比,猜想或发现一些初 步的结论;通过法则运用,体验数学从一般到特殊的论证过 程;对自己及他人的问题解决过程给出合理解释。推理意识 有助于养成讲道理、有条理的思维习惯,增强交流能力,是 形成推理能力的经验基础。 |
小学 |
推理 能力 |
推理能力主要是指从一些事实和命题出发,依据规则推 出其他命题或结论的能力。理解逻辑推理在形成数学概念、 法则、定理和解决问题中的重要性,初步掌握推理的基本形 式和规则;对于一些简单问题,能通过特殊结果推断一般结 论;理解命题的结构与联系,探索并表述论证过程;感悟数 学的严谨性,初步形成逻辑表达与交流的习惯。推理能力有 助于逐步养成重论据、合乎逻辑的思维习惯,形成实事求是 的科学态度与理性精神。 |
初中 |
数据 意识 |
数据意识主要是指对数据的意义和随机性的感悟。知道 在现实生活中,有许多问题应当先做调查研究,收集数据, 感悟数据蕴含的信息;知道同样的事情每次收集到的数据可 能不同,而只要有足够的数据就可能从中发现规律;知道同 一组数据可以用不冋方式表达,需要根据问题的背景选择合 适的方式。形成数据意识有助于理解生活中的随机现象,逐 步养成用数据说话的习惯。 |
小学 |
续表
表现 |
内涵 |
阶段 |
数据 观念 |
数据观念主要是指对数据的意义和随机性有比较清晰的 认识。知道数据蕴含着信息,需要根据问题的背景和所要研 究的问题确定数据收集、整理和分析的方法;知道可以用定 量的方法描述随机现象的变化趋势及随机事件发生的可能性 大小。形成数据观念有助于理解和表达生活中随机现象发生 的规律,感知大数据时代数据分析的重要性,养成重证据、 讲道理的科学态度。 |
初中 |
模型 意识 |
模型意识主要是指对数学模型普适性的初步感悟。知道 数学模型可以用来解决一类问题,是数学应用的基本途径; 能够认识到现实生活中大最的问题都与数学有关,有意识地 用数学的概念与方法予以解释。模型意识有助于开展跨学科 主题学习,增强对数学的应用意识,是形成模型观念的经验 基础。 |
小学 |
模型 观念 |
模型观念主要是指对运用数学模型解决实际问题有清晰 的认识。知道数学建模是数学与现实联系的基本途径;初步 感知数学建模的基本过程,从现实生活或具体情境中抽象出 数学问题,用数学符号建立方程、不等式、函数等表示数学 问题中的数量关系和变化规律,求出结果并讨论结果的意 义。模型观念有助于开展跨学科主题学习,感悟数学应用的 普遍性。 |
初中 |
应用 意识 |
应用意识主要是指有意识地利用数学的概念、原理和方 法解释现实世界中的现象与规律,解决现实世界中的问题。 能够感悟现实生活中蕴含着大量的与数量和图形有关的问 题,可以用数学的方法予以解决;初步了解数学作为一种通 用的科学语言在其他学科中的应用,通过跨学科主题学习建 立不同学科之间的联系。应用意识有助于用学过的知识和方 法解决简单的实际问题,养成理论联系实际的习惯,发展实 践能力。 |
小学 与 初中 |
续表
表现 |
内涵 |
阶段 |
创新 意识 |
创新意识主要是指主动尝试从日常生活、自然现象或科 学情境中发现和提出有意义的数学问题。初步学会通过具体 的实例,运用归纳和类比发现数学关系与规律,提出数学命 题与猜想,并加以验证;勇于探索一些开放性的、非常规的 实际问题与数学问题。创新意识有助于形成独立思考、敢于 质疑的科学态度与理性精神。 |
小学 与 初中 |
通过义务教育阶段的数学学习,学生逐步会用数学的眼光观察现 实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世 界(简称“三会”)。学生能:
(1) 获得适应未来生活和进一步发展所必需的数学基础知识、基 本技能、基本思想、基本活动经验。
(2) 体会数学知识之间、数学与其他学科之间、数学与生活之间 的联系,在探索真实情境所蕴含的关系中,发现问题和提出问题,运 用数学和其他学科的知识与方法分析问题和解决问题。
(3) 对数学具有好奇心和求知欲,了解数学的价值,欣赏数学 美,提高学习数学的兴趣,建立学好数学的信心,养成良好的学习习 惯,形成质疑问难、自我反思和勇于探索的科学精神。
为体现义务教育数学课程的整体性与发展性,根据学生数学学习 的心理特征和认知规律,将九年的学习时间划分为四个学段。其中, “六三”学制1〜2年级为第一学段,3〜4年级为第二学段,5〜6年
级为第三学段,7〜9年级为第四学段。
根据“六三”学制四个学段学生发展的特征,描述总目标在各学 段的表现和要求,将核心素养的表现体现在每个学段的具体目标 之中。
1.第一学段(1〜2年级)
经历简单的数的抽象过程,认识万以内的数,能进行简单的整数 四则运算,形成初步的数感、符号意识和运算能力。能辨认简单的立 体图形和平面图形,认识长方形和正方形的特征,体验物体长度的测 量过程,认识常见的长度单位,形成初步的量感和空间观念。经历简 单的分类过程,能根据给定的标准进行分类,形成初步的数据意识。 在主题活动中认识货币单位、时间单位和基本方向,尝试用数学方法 解决问题,积累数学活动经验,形成初步的量感和应用意识。
能在教师指导下,从日常生活中提出简单的数学问题,尝试运用 所学的知识和方法解决问题。在解决问题的过程中,感悟分析问题和 解决问题的基本方法,感受数学在生活中的应用,形成初步的几何直 观和应用意识。
对身边与数学有关的事物有好奇心,能参与数学学习活动。在他 人帮助下,尝试克服困难,感受数学活动中的成功。了解数学可以描 述生活中的一些现象,感受数学与生活有密切联系,感受数学美。能 倾听他人的意见,尝试对他人的想法提出建议。
在一年级第一学期的入学适应期,利用生活经验和幼儿园相关活 动经验,通过具体形象、生动活泼的活动方式学习简单的数学内容。 这期间的主要目标包括:认识20以内的数,会20以内数的加减法 (不含退位减法);能辨认物体和简单图形的形状,会简单的分类;解 决日常生活中的简单问题;对数学学习产生兴趣并树立信心。
认识自然数,经历小数和分数的形成过程,初步认识小数和分 数;能进行较复杂的整数四则运算和简单的小数、分数的加减运算, 理解运算律;形成数感、运算能力和初步的推理意识。认识常见的平 面图形,经历平面图形的周长和面积的测量过程,探索长方形周长和 面积的计算方法;了解图形的平移、旋转和轴对称;形成量感、空间 观念和初步的几何直观。经历简单的数据收集过程,了解数据收集、 整理和呈现的简单方法;理解平均数的意义,会用平均数解决问题; 形成初步的数据意识。在主题活动中进一步认识时间单位和方向,认 识质量单位,尝试应用数学和其他学科知识与方法解决问题,积累数 学活动经验,形成量感、推理意识和应用意识。
尝试从日常生活中发现和提出数学问题,探索分析和解决问题的 方法,经历独立思考并与他人合作交流解决问题的过程,会用常见的 数量关系和其他学科的知识与方法解决问题,能初步判断结果的合理 性;形成初步的模型意识、几何直观和应用意识。
愿意了解日常生活中与数学相关的信息,愿意参与数学学习活 动。在他人的鼓励和引导下,体验克服困难、解决问题的成就,体会 数学的作用,体验数学美。在学习活动中能提出自己的想法,在与他 人交流的过程中,敢于质疑和反思。
经历用字母表示数的过程,认识自然数的一些特征,理解小数和 分数的意义;能进行小数和分数的四则运算,探索数运算的一致性; 形成符号意识、运算能力、推理意识。探索几何图形面积和体积的计 算方法,会计算常见平面图形的周长和面积,会计算常见立体图形的 体积和表面积;能用有序数对确定点的位置,进一步认识图形的平 移、旋转和轴对称;形成量感、空间观念和几何直观。经历收集、整
理和表达数据的过程,会用条形统计图、折线统计图表达数据,并作 出简单的判断;理解百分数的意义,了解随机现象发生的可能性;形 成数据意识和初步的应用意识。在主题活动和项目学习中了解负数, 应用数学和其他学科知识与方法解决问题,积累数学活动经验,形成 数感、量感、模型意识、应用意识和创新意识。
尝试在真实的情境中发现和提出问题,探索运用基本的数量关 系,以及几何直观、逻辑推理和其他学科的知识、方法分析与解决问 题,形成模型意识和初步的应用意识、创新意识。
对数学具有好奇心和求知欲,主动参与数学学习活动。在解决问 题的过程中,体验成功的乐趣,相信自己能够学好数学,感受数学的 价值,体验并欣赏数学美。初步养成认真勤奋、独立思考、合作交 流、反思质疑的习惯。
4.第四学段(7〜9年级)
经历有理数、实数的形成过程,初步理解数域扩充;掌握数与式 的运算,能够解释运算结果的意义;会用代数式、方程、不等式、函 数等描述现实问题中的数量关系和变化规律,形成合适的运算思路解 决问题;形成抽象能力、模型观念,进一步发展运算能力。经历探索 图形特征的过程,建立基本的几何概念;通过尺规作图⑴等直观操 作的方法,理解平面图形的性质与关系;掌握基本的几何证明方法; 知道平移、旋转和轴对称的基本特征,理解相关概念;认识平面直角 坐标系,能够通过平面直角坐标系描述图形的位置与运动;形成推理 能力,发展空间观念和几何直观。掌握数据收集与整理的基本方法, 理解随机现象;探索利用统计图表表示数据的方法,理解各种统计图 表的功能;经历利用样本推断总体的过程,能够计算平均数、方差、 四分位数等基本统计量,了解频数、频率和概率的意义;形成数据观
口]尺规作图是指用无刻度直尺和圆规进行作图。 念、模型观念和推理能力。在项目学习中,综合运用数学和其他学科 知识与方法解决问题,积累数学活动经验,发展核心素养。
探索在不同的情境中从数学的角度发现和提出问题,综合运用数 学和其他学科的知识从不同的角度寻求分析问题和解决问题的方法, 能运用几何直观、逻辑推理等方法解决问题,形成模型观念和数据观 念。在与他人合作交流解决问题的过程中,能够严谨、准确地表达自 己的观点,并能较好地理解他人的思考方法和结论。能够回顾解决问题的思考过程,反思解决问题的方法和结论,形成批判性思维和创新 意识。
关注社会生活中与数学相关的信息,主动参与数学活动;在解决 数学问题的过程中,能够克服困难,树立学好数学的信心,感受数学 在实际生活中的应用,体会数学的价值,欣赏并尝试创造数学美;养 成认真勤奋、独立思考、合作交流、反思质疑的学习习惯。
“五四”学制第二学段(3〜5年级)目标主要参照“六三”学制 第三学段(5〜6年级)目标制定,适当降低要求。“五四”学制第三 学段(6〜7年级)目标在“六三”学制第三学段(5〜6年级)目标 基础上合理提高要求,结合“六三”学制第四学段(7~9年级)目 标确定,使“五四”学制6〜9年级目标进阶更加科学。
义务教育阶段数学课程内容由数与代数、图形与几何、统计与概 率、综合与实践四个学习领域组成。
数与代数、图形与几何、统计与概率以数学核心内容和基本思想 为主线循序渐进,每个学段的主题有所不同。综合与实践以培养学生 综合运用所学知识和方法解决实际问题的能力为目标,根据不同学段 学生特点,以跨学科主题学习为主,适当釆用主题式学习和项目式学 习的方式,设计情境真实、较为复杂的问题,引导学生综合运用数学学科和跨学科的知识与方法解决问题。
根据学段目标的要求,四个学习领域的内容按学段逐步递进,不 同学段主题有所不同。具体安排如表2。
表2各学段各领域的主题
领域 |
学段 |
|||
第一学段 (1~2年级) |
第二学段 (3〜4年级) |
第三学段 (5〜6年级) |
第四学段 (7〜9年级) |
|
数与 代数 |
|
|
|
|
续表
领域 |
学段 |
|||
第一学段 (1~2年级) |
第二学段 (3〜4年级) |
第三学段 (5〜6年级) |
第四学段 (7〜9年级) |
|
图形与 几何 |
1.图形的认识 与测量 |
|
|
|
统计与 概率 |
1.数据分类 |
1.数据的收集、 整理与表达 |
|
|
综合与 实践 |
重在解决实际问题,以跨学科主题学习为主,主要包括主题活动和 项目学习等。第一、第二、第三学段主要釆用主题式学习,将知识内容 融入主题活动中;第四学段可釆用项目式学习。 |
每个领域的课程内容按“内容要求"“学业要求” “教学提示"三 个方面呈现。内容要求主要描述学习的范围和要求;学业要求主要明 确学段结束时学习内容与相关核心素养所要达到的程度;教学提示主 要是针对学习内容和达成相关核心素养而提出的教学建议。
数与代数是义务教育阶段学生数学学习的重要领域,在小学阶段 包括“数与运算"和“数量关系"两个主题。学段之间的内容相互关 联,由浅入深,层层递进,螺旋上升,构成相对系统的知识结构。
“数与运算”包括整数、小数和分数的认识及其四则运算。数是 对数量的抽象,数的运算重点在于理解算理、掌握算法,数与运算之 间有密切的关联。学生经历由数量到数的形成过程,理解和掌握数的 概念;经历算理和算法的探索过程,理解算理,掌握算法。初步体会 数是对数量的抽象,感悟数的概念本质上的一致性,形成数感和符号 意识;感悟数的运算以及运算之间的关系,体会数的运算本质上的一 致性,形成运算能力和推理意识。
“数量关系”主要是用符号(包括数)或含有符号的式子表达数 量之间的关系或规律。学生经历在具体情境中运用数量关系解决问题 的过程,感悟加法模型和乘法模型的意义,提高发现和提出问题、分 析和解决问题的能力,形成模型意识和初步的应用意识。
第一学段(1〜2年级)
(1) 在实际情境中感悟并理解万以内数的意义,理解数位的含 义,知道用算盘可以表示多位数(例1)。
(2) 了解符号V,=, >的含义,会比较万以内数的大小;通过 数的大小比较,感悟相等和不等关系(例2)。
(3) 在具体情境中,了解四则运算的意义,感悟运算之间的关 系(例3)。
(6) 在解决生活情境问题的过程中,体会数和运算的意义,形成 初步的符号意识、数感、运算能力和推理意识。
(1) 在简单的生活情境中,运用数和数的运算解决问题,能解释 结果的实际意义,形成初步的应用意识。
(2) 探索用数或符号表达简单情境中的变化规律(例4和例5)。
能用数表示物体的个数或事物的顺序,能认、读、写万以内的 数;能说出不同数位上的数表示的数值;能用符号表示数的大小关系 (例6),形成初步的数感和符号意识。
能描述四则运算的含义,知道减法是加法的逆运算、乘法是加法 的简便运算、除法是乘法的逆运算;能熟练口算20以内数的加减法 和表内乘除法,能口算简单的百以内数的加减法;能计算两位数和三 位数的加减法。形成初步的运算能力。
能在熟悉的生活情境中运用数和数的运算,合理表达简单的数量 关系,解决简单的问题。
能在解决问题的过程中,体会解决问题的道理,解释计算结果的 实际意义,感悟数学与现实世界的关联,形成初步的模型意识、几何 直观和应用意识。
第一学段是学生进入小学学习的开始,要充分考虑学生在幼儿园 阶段形成的活动经验和生活经验,遵循本阶段学生的思维特点和认知 规律,为学生提供生动有趣的活动,更好地完成从幼儿园阶段到小学
阶段的学习过渡。
数与运算的教学。数的认识与数的运算具有密切的联系,既要注 重各自的特征,也要关注二者的联系。数的认识是数的运算的基础, 通过数的运算有助于学生更好地认识数。
数的认识教学应提供学生熟悉的情境,使学生感受具体情境中的 数量,可以用对应的方法,借助小方块、圆片和小棒等表示相等的数 量,然后过渡到用数字表达,使学生体会可以用一个数字符号表示同 样的数量;知道不同数位上的数字表示不同的值。教学中应注意,10 以内数的教学重点是使学生体验1〜9从数量到数的抽象过程,通过9 再加1就是十,体会十的表达与1〜9的不同是在新的位置上写1,这 个位置叫十位,十位上的1表示1个十,1个十用数字符号10表达。 同理认识百以内数、万以内数。通过数量多少的比较,理解数的大小 关系(例7)。在这样的教学活动中,帮助学生形成初步的符号意识 和数感。
数的运算教学应让学生感知数的加减运算要在相同数位上进行, 体会简单的推理过程。引导学生通过具体操作活动,利用对应的方法 理解加法的意义,感悟减法是加法的逆运算;在具体情境中,启发学 生理解乘法是加法的简便运算,感悟除法是乘法的逆运算。在教学活 动中,始终关注学生运算能力和推理意识的形成与发展。
数量关系的教学。通过创设简单的情境,提出合适的问题,弓I导 学生发现数量关系;利用画图、实物操作等方法,引导学生用学过的 知识表达情境中的数量关系,体会几何直观,形成初步的应用意识。
第二学段(3〜4年级)
【内容要求】
⑴在具体情境中,认识万以上的数,了解十进制计数法;探索
并掌握多位数的乘除法,感悟从未知到已知的转化(例8)。
(2) 结合具体情境,初步认识小数和分数,感悟分数单位(例 9);会同分母分数的加减法和一位小数的加减法。
(3) 在解决简单实际问题的过程中,理解四则运算的意义,能进 行整数四则混合运算。
(4) 探索并理解运算律(加法交换律和结合律、乘法交换律和结 合律、乘法对加法的分配律),能用字母表示运算律。
(5) 会运用数描述生活情境中事物的特征(例10),逐步形成数 感、运算能力和初步的推理意识。
(1) 在实际情境中,运用数和数的运算解决问题;在解决实际问 题的过程中,能结合具体情境,选择合适的单位进行简单估算,体会 估算在生活中的作用(例11)。
(2) 能借助计算器进行计算,解决简单的实际问题,探索简单的 规律(例12)。
(3) 在具体情境中,认识常见数量关系:总量=分量+分量(例 13)、总价=单价X数量、路程=速度X时间;能利用这些关系解决 简单的实际问题。
(5) 能解决生活中的简单问题,并能对结果的实际意义作出解 释,经历探索简单规律的过程(例14),形成初步的模型意识和应用 意识。
能结合具体实例解释万以上数的含义,能认、读、写万以上的
数,会用万、亿为单位表示大数。能计算两位数乘除三位数。
能直观描述小数和分数,能比较简单的小数的大小和分数的大 小;会进行同分母分数的加减运算和一位小数的加减运算。形成数 感、符号意识和运算能力。
能描述减法与加法的关系、除法与乘法的关系;能进行整数四则 混合运算(以两步为主,不超过三步),正确运用小括号和中括号。 能说出运算律的含义,并能用字母表示;能运用运算律进行简便运 算,解决相关的简单实际问题,形成运算能力。
2.数量关系
能在简单的实际情境中,运用四则混合运算解决问题,能选择合 适的单位通过估算解决实际问题,形成初步的应用意识。
能在真实情境中,发现常见数量关系,感悟利用常见数量关系解 决问题;能借助计算器进行计算,并解释计算结果的实际意义;形成 初步的模型意识、几何直观和应用意识。
能在真实情境中,合理利用等量的等量相等进行推理,形成初步 的推理意识(例15)。
【教学提示】
数与运算的教学。在认识整数的基础上,认识小数和分数。通过 数的认识和数的运算有机结合,感悟计数单位的意义,了解运算的一 致性。
数的认识教学应为学生提供合理的情境,引导学生进一步经历整 数的抽象过程,知道大数的意义和四位一级的表示方法,建立数感; 通过学生熟悉的具体情境,引导学生初步认识分数,进行简单的分数 大小比较,感悟分数单位;借助学生的生活经验,引导学生认识小数 单位,进一步感悟十进制计数法。在这样的过程中,发展学生数感。
数的运算教学应利用整数的乘法运算,理解算理与算法之间的关
系;在进行除法计算的过程中,进一步理解除法是乘法的逆运算。在 这样的过程中,感悟如何将未知转为已知,形成初步的推理意识。通 过小数加减运算、同分母分数加减运算,与整数运算进行比较,引导 学生初步了解运算的一致性,培养运算能力。通过实际问题和具体计 算,引导学生用归纳的方法探索运算律、用字母表示运算律,感知运 算律是确定算理和算法的重要依据,形成初步的代数思维。
数量关系的教学。在具体情境中,利用加法或乘法表示数量之间 的关系,建立加法模型和乘法模型,知道模型中数量的意义。估算的 重点是解决实际问题。
常见数量关系的教学要在了解四则运算含义的基础上,引导学生 理解现实问题中的加法模型是表示总量等于各分量之和,乘法模型可 大体分为与个数有关(总价=单价X数量)和与物理量有关(路程= 速度X时间)的两种形式,感悟模型中量纲的意义。应设计合适的问 题情境,引导学生分析和表达情境中的数量关系,启发学生会用数学的语言表达现实世界,形成初步的模型意识,提升问题解决能力。利 用现实背景,引导学生理解等量的等量相等这一基本事实,形成初步 的推理意识(例15)。
估算教学要引导学生在具体的问题情境中选择合适的单位进行估 算,体会估算在解决实际问题中的作用,了解估算的实际意义。
第三学段(5〜6年级)
【内容要求】
1.数与运算
(1) 知道2, 3, 5的倍数的特征,了解公倍数和最小公倍数,了 解公因数和最大公因数,了解奇数、偶数、质数(或素数)和合数。
位;会进行小数、分数的转化,进一步发展数感和符号意识。
(4) 能进行简单的小数、分数四则运算和混合运算,感悟运算的 一致性,发展运算能力和推理意识。
2.数量关系
(2) 在解决实际问题的过程中,会选择合适的方法进行估算(例 18)。
(3) 在具体情境中,探索用字母表示事物的关系、性质和规律的 方法,感悟用字母表示的一般性(例19)。
(4) 在实际情境中理解比和比例以及按比例分配的含义,能解决 简单的问题。
(5) 通过具体情境,认识成正比的量(如,=5)(例20);能探索 规律或变化趋势(如y=5z)(例21)。
(6) 能运用常见的数量关系解决实际问题,能合理解释结果的实 际意义,逐步形成模型意识和几何直观,提高解决问题的能力。
[学业要求】
能找出2, 3, 5的倍数。在1〜100的自然数中:能找出10以内 自然数的所有倍数,10以内两个自然数的公倍数和最小公倍数;能 找出一个自然数的所有因数,两个自然数的公因数和最大公因数;能 判断一个自然数是否是质数或合数。
能用直观的方式表示分数和小数,能比较两个分数的大小和两个 小数的大小;会进行小数和分数的转化(不包括将循环小数转化成分 数)。能在实际情境中运用小数和分数解决问题,进一步发展符号意 识和数感。
能进行简单小数和分数的四则运算和混合运算(不超过三步),
并说明运算过程。能在较复杂的真实情境中,选择恰当的运算方法解 决问题,形成运算能力和推理意识。
能在具体问题中感受等式的基本性质(例17)。
能在解决实际问题中运用恰当的方法进行估算,并能描述估算的 过程。
能在具体情境中,用字母或含有字母的式子表示数量之间的关 系、性质和规律,感悟用字母表示具有一般性。
能在具体情境中判断两个量的比,会计算比值,理解比值相同的 量,能解决按比例分配的简单问题。
能在具体情境中描述成正比的量,能找出生活中成
X
正比的量的实例;能根据给出的成正比关系的数据在方格纸上画图, 了解y^kx(k^O)的形式,能根据其中一个量的值计算另一个量 的值。
能解决较复杂的真实问题,形成几何直观和初步的应用意识,提 高解决问题的能力。
【教学提示】
数与运算的教学。通过整数的运算,感悟整数的性质;通过整 数、小数、分数的运算,进一步感悟计数单位在运算中的作用,感悟 运算的一致性。
数的认识教学要引导学生根据数的意义,用列举、计算、归纳等
方法,探索2, 3, 5的倍数的特征,理解公因数和公倍数、奇数和偶
数、质数和合数,形成推理意识。
在初步认识小数和分数的基础上,引导学生在具体情境中,理解 小数和分数的意义,感悟计数单位。在教学过程中,可以让学生体验 与小数有关的数学文化(例22),理解、描述各数位上数字的意义, 进一步提升数感。
数的运算教学应注重对整数、小数和分数四则运算的统筹,让学 生进一步感悟运算的一致性。例如,在分数加减运算的过程中,引导 学生理解通分的目的是得到同样计数单位,进一步理解计数单位对分 数表达的重要性,理解整数、分数、小数的加减运算都要在相同计数 单位下进行,感悟加减运算的一致性。
数量关系的教学。理解用字母表示的一般性,形成初步的代数 思维。
用字母表示的教学要设计合理的实际情境,引导学生会用字母或 含有字母的式子表达实际情境中的数量关系、性质和规律。例如:用 字母表达常见数量关系及其变形,“路程=速度X时间”表示为s = vXt,这个关系的变式表示为77=S£ =5~?V;还可以表达图形 的周长和面积计算公式等,感受字母表达的一般性。运用数和字母表 达数量关系,通过运算或推理解决问题(例23),形成与发展学生的 符号意识、推理意识和初步的应用意识。
估算教学要借助真实情境,引导学生在选择合适单位估算的基础 上,感悟选择合适的方法估算的重要性,提高解决问题的能力,发展 初步的应用意识。
比和比例教学要合理利用实际生活中的情境,引导学生发现并用 字母表达两个数量之间的倍数关系。例如,通过同样照片的放大与缩 小、食品中原料的成分比等,理解比例的意义,能解决简单的按比例 分配的问题。
成正比的量教学要在具体情境中呈现两个成正比的量的变化规
律,弓I导学生理解可以把这个规律表示为哭=E以夭0)的形式,也可
X
以表示为丁=奴以夭0)的形式,感悟这两个表达式的共性与差异; 引导学生尝试在方格纸上画出给定的成正比的量的数据,建立几何直 观,为初中学习函数积累经验。
图形与几何是义务教育阶段学生数学学习的重要领域,在小学阶 段包括“图形的认识与测量"和“图形的位置与运动"两个主题。学 段之间的内容相互关联,螺旋上升,逐段递进。
“图形的认识与测量”包括立体图形和平面图形的认识,线段长 度的测量,以及图形的周长、面积和体积的计算。
图形的认识主要是对图形的抽象。学生经历从实际物体抽象出几 何图形的过程,认识图形的特征,感悟点、线、面、体的关系;积累 观察和思考的经验,逐步形成空间观念。图形的认识与图形的测量有 密切关系。图形的测量重点是确定图形的大小。学生经历统一度量单 位的过程,感受统一度量单位的意义,基于度量单位理解图形长度、 角度、周长、面积、体积。在推导一些常见图形周长、面积、体积计 算方法的过程中,感悟数学度量方法,逐步形成量感和推理意识。
“图形的位置与运动"包括确定点的位置,认识图形的平移、旋 转、轴对称。学生结合实际情境判断物体的位置,探索用数对表示平 面上点的位置,增强空间观念和应用意识。学生经历对现实生活中图 形运动的抽象过程,认识平移、旋转、轴对称的特征,体会运动前后 图形的变与不变,感受数学美,逐步形成空间观念和几何直观。
第一学段(1〜2年级)
(1) 通过实物和模型辨认简单的立体图形和平面图形,能对图形 分类,会用简单图形拼图。
(2) 结合生活实际,体会建立统一度量单位的重要性,认识长度 单位米、厘米。能估测一些物体的长度,并进行测量。
(3) 在图形认识与测量的过程中,形成初步的空间观念和量感。
能辨认长方体、正方体、圆柱、球等立体图形,能直观描述这些 立体图形的特征;能辨认长方形、正方形、平行四边形、三角形、圆 等平面图形,能直观描述这些平面图形的特征。能根据描述的特征对 图形进行简单分类。
会用简单的图形拼图,能在组合图形中说出各组成部分图形的名 称;能说出立体图形中某一个面对应的平面图形(例24)。形成初步 的空间观念。
感悟统一单位的重要性,能恰当地选择长度单位米、厘米描述生 活中常见物体的长度,能进行单位之间的换算;能估测一些身边常见 物体的长度,并能借助工具测量生活中物体的长度(例25)。初步形 成量感。
图形的认识与测量的教学。结合低年级学生的年龄特点,充分利
用学生在幼儿园阶段积累的有关图形的经验,以直观感知为主。
图形的认识教学要选用学生身边熟悉的素材,鼓励学生动手操 作,感知立体图形和平面图形的特点以及这两类图形的关联,弓I导学 生经历图形的抽象过程,积累观察物体的经验,形成初步的空间 观念。
图形的测量教学要引导学生经历统一度量单位的过程,创设测量 课桌长度等生活情境,借助挥的长度、铅笔的长度等不同的方式测 量,经历测量的过程,比较测量的结果,感受统一长度单位的意义; 引导学生经历用统一的长度单位(米、厘米)测量物体长度的过程, 如重新测量课桌长度,加深对长度单位的理解。
第二学段(3〜4年级)
(1) 结合实例认识线段、射线和直线;体会两点间所有连线中线 段最短,知道两点间距离;会用直尺和圆规作一条线段等于已知线 段(例26); 了解同一平面内两条直线的位置关系。
(2) 结合生活情境认识角,知道角的大小关系;会用量角器量 角,会用量角器或三角板画角。
(3) 认识长度单位千米,知道分米、毫米;认识面积单位厘米②、 分米\米。能进行简单的单位换算;能恰当地选择单位估测一些物 体的长度和面积,会进行测量。
(4) 认识三角形和四边形,会根据图形特征对三角形和四边形进 行分类。
(5) 结合实例认识周长和面积;探索并掌握长方形、正方形的周 长和面积的计算公式。
(6) 能根据具体事物、照片或直观图辨认从不同角度观察到的简 单物体。
2.图形的位置与运动
(2) 在感受图形的位置与运动的过程中,形成空间观念和初步的 几何直观。
能说出线段、射线和直线的共性与区别;知道两点间所有连线中 线段最短,能在具体情境中运用“两点之间线段最短”解决简单问 题;能辨认同一平面内两条直线是否平行或垂直;能辨认从不同角度 观察简单物体所对应的照片或直观图。形成空间观念和初步的几何 直观。
会比较角的大小;能说出直角、锐角、钝角的特征,能辨认平角 和周角;会用量角器测量角的大小,能用直尺和量角器画出指定度数 的角;会用三角板画30°, 45°, 60°, 90°的角。
会根据角的特征对三角形分类,认识直角三角形、锐角三角形和 钝角三角形;能根据边的相等关系,认识等腰三角形和等边三角形。 能说出长方形、正方形、平行四边形、梯形的特征;能说出图形之间 的共性与区别(例28)。形成空间观念和初步的几何直观。
能描述长度单位千米、分米、毫米,能进行长度单位之间的换 算;能在真实情境中选择合适的长度单位。能通过具体事例描述面积 单位厘米2、分米气米2,能进行面积单位之间的换算。
经历用直尺和圆规将三角形的三条边画到一条直线上的过程,直 观感受三角形的周长(例29),知道什么是图形的周长;会测量三角 形、长方形和正方形的周长;会计算长方形、正方形的周长和面积。
在解决图形周长、面积的实际问题过程中,逐步积累操作的经 验,形成量感和初步的几何直观。
能在实际情境中,辨认出生活中的平移、旋转和轴对称现象,直 观感知平移、旋转和轴对称的特征,能利用平移或旋转解释现实生活 中的现象,形成空间观念。
图形的认识与测量的教学。将图形的认识与图形的测量有机融 合,引导学生从图形的直观感知到探索特征,并进行图形的度量。
图形的认识教学要帮助学生建立几何图形的直观概念。通过观察 长方体的外表认识面,通过面的边缘认识线段,感悟图形抽象的 过程。
在认识线段的基础上,引导学生用直尺和圆规作给定线段的等长 线段,感知线段长度与两点间距离的关系(例26),增强几何直观。
结合实际情境,感受同一平面内两条直线的两种位置关系,借助 动态演示或具体操作,感悟两条直线平行与相交的差异。
角的认识教学可以利用纸扇、滑梯等学生熟悉的事物或场景直观 感知角,利用抽象图形引导学生知道角的大小与边的长短无关,并比 较角的大小。利用学具让学生观察角的大小变化,认识直角、锐角、 钝角、平角和周角。启发学生根据角的特征将三角形分为锐角三角 形、直角三角形和钝角三角形;通过边的特征知道等腰三角形和等边 三角形。引导学生在认识长方形、正方形、平行四边形、梯形的过程 中,感悟这几类四边形的共性与区别(例28)。
结合学生身边熟悉的场景,通过从不同方位观察同一物体,弓I导
学生将观察到的图像与观察方位对应,发展空间观念和想象能力。
图形的面积教学要让学生在熟悉的情境中,直观感知面积的概 念,经历选择面积单位进行测量的过程,理解面积的意义,形成 量感。
图形的周长教学可以借助用直尺和圆规作图的方法,引导学生自 主探索三角形的周长,感知线段长度的可加性,理解三角形的周长 (例29),归纳出长方形和正方形周长的计算公式。采用类比的方法, 感知图形面积的可加性,推导出长方形和正方形面积的计算公式。在 探索的过程中,形成初步的几何直观和推理意识。
图形的位置与运动的教学。尽量选择学生熟悉的情境,通过组织 有趣的活动(例30)或布置需要较长时间完成的长作业(例31),帮 助学生认识平移、旋转和轴对称的现象,感知特征,增强空间观念。
第三学段(5〜6年级)
【内容要求】
(1) 知道三角形任意两边之和大于第三边(例32);知道三角形 内角和是180°。
(2) 认识圆和扇形,会用圆规画圆;认识圆周率(例22);探索 圆的周长和面积计算公式,能解决简单的实际问题。
(3) 知道面积单位千米气公顷;探索并掌握平行四边形、三角 形和梯形的面积计算公式;会估计不规则图形的面积(例33)。
(4) 通过实例了解体积(或容积)的意义,知道体积(或容积) 的度量单位,能进行单位之间的换算;体验不规则物体体积的测量 方法。
(5) 认识长方体、正方体和圆柱,了解这些图形的展开图,探索 并掌握这些图形的体积和表面积的计算公式,认识圆锥并探索其体积 的计算公式,能用这些公式解决简单的实际问题。
(6) 对于简单物体,能辨认不同方向(前面、侧面、上面)的形 状图(例34)。
(7) 在图形认识与测量的过程中,进一步形成量感、空间观念和 几何直观。
(1) 能根据参照点的方向和距离确定物体的位置;会在实际情境 中,描述简单的路线图(例35)。
(2) 能用有序数对(限于自然数)表示点的位置,理解有序数对 与方格纸上点的对应关系(例36)。
(3) 了解比例尺,能利用方格纸按比例将简单图形放大或缩小。
(4) 能在方格纸上进行简单图形的平移和旋转;认识轴对称图形 和对称轴,能在方格纸上补全简单的轴对称图形。
(5) 能从平移、旋转和轴对称的角度欣赏生活中的图案,能借助 方格纸设计简单图案,感受数学美,形成空间观念。
探索并说明三角形任意两边之和大于第三边的道理;通过对图形
的操作,感知三角形内角和是180°,能根据已知两个角的度数求出第 三个角的度数。
会计算平行四边形、三角形、梯形的面积,能用相应公式解决实 际问题。
会用圆规画圆,能描述圆和扇形的特征;知道圆的周长、半径和
直径,了解圆的周长与其直径之比是一个定值,认识圆周率;会计算
圆的周长和面积,能用相应公式解决简单的实际问题。
认识长方体、正方体和圆柱,能说出这些图形的特征,能辨认这 些图形的展开图,会计算这些图形的体积和表面积;认识圆锥,能说 出圆锥的特征,会计算圆锥的体积;能用相应公式解决简单的实际问 题,形成空间观念和初步的应用意识。
能说出面积单位千米2、公顷和体积单位米3、分米3、厘米3,以 及容积单位升、毫升,能进行单位换算,能选择合适单位描述实际 问题。
对于简单物体,能辨认不同方向(前面、侧面、上面)的形状 图(例34),能把观察的方向与相应形状图对应起来,形成空间 观念。
2.图形的位置与运动
能根据指定参照点的具体方向和距离描述物体所处位置;能在熟 悉的情境中,描述简单的路线图(例35),形成几何直观。
能在方格纸上用有序数对(限于自然数)确定点的位置,理解有 序数对与对应点的关系(例36),形成空间观念。
认识比例尺,能说出比例尺的意义;在实际情境中,会按给定比 例进行图上距离与实际距离的换算;能在方格纸上,按给定比例画出 简单图形放大或缩小后的图形,形成空间观念和推理意识。
能在方格纸上描述图形的位置,能辨别和想象简单图形平移、旋 转后的图形,画出简单图形沿水平或垂直方向平移后的图形,以及旋 转90°后的图形(例30);能借助方格纸,了解图形平移、旋转的变 化特征。知道轴对称图形的对称轴(例31),能在方格纸上补全轴对 称图形,形成推理意识。
对给定的简单图形,能用平移、旋转和轴对称的方法,在方格纸 上设计图案,并能说出设计图案与简单图形的关系。
【教学提示】
图形的认识与测量的教学。引导学生通过对立体图形的测量,从 度量的角度认识立体图形的特征;理解长度、面积、体积都是相应度 量单位的累加;通过对平面图形性质的认识,感知数学说理的过程。
图形的认识教学要引导学生经历基于给定线段用直尺和圆规画三 角形的过程,探索三角形任意两边之和大于第三边(例32),并说出 其中的道理,经历根据“两点间线段最短"的基本事实说明三角形三 边关系的过程,形成推理意识。可以从特殊三角形入手,通过直观操 作,引导学生归纳出三角形的内角和,增强几何直观。
引导学生运用转化的思想,推导平行四边形、三角形、梯形、圆 等平面图形的面积公式,形成空间观念和推理意识。
借助现实生活中的实物,引导学生通过观察、操作等活动,认识 长方体、正方体、圆柱、圆锥等立体图形的特征,沟通立体图形之间 的联系,如圆柱和圆锥的相同点和不同点,以及平面图形和立体图形 之间的关系,增强空间想象能力。引导学生经历体积单位的确定过 程,通过操作、转化等活动探索立体图形的体积和表面积的计算方 法。让学生借助折叠纸盒等活动经验,认识立体图形展开图,建立立 体图形与展开后的平面图形之间的联系,培养空间观念和空间想象 能力。
圆的教学可以列举生活中的实例,引导学生概括圆的特点,利用 圆规画圆,加深对圆的理解。引导学生经历探索周长与直径之比是一 个常数的过程,认识圆周率,讲述祖冲之的故事(例22),加深对圆 周率和小数数位的理解,了解中国古代数学家的杰出贡献,传播数学 中的中华优秀传统文化。让学生借助操作探究和掌握圆的周长和面积 公式,解决实际问题。
图形的位置与运动的教学。引导学生通过图形位置的表达,理解 坐标的意义;通过图形运动的观察和表达,体会坐标表达的重要性,
为未来学习数形结合奠定基础。
图形的位置教学可结合教室里学生的位置、电影院里观众的位置 等熟悉的情境,引导学生借助方格纸上的点,用有序数对表示具体的 位置。结合现实情境,引导学生根据相对参照点的方向和距离说出物 体所处位置,例如,“书店”在“人民广场”北偏东30°方向,距离 300米的地方。教学时,可结合所在地的标志性建筑等,有条件的学校可以借助信息技术,通过动态演示点的运动帮助学生理解图形位置 确定方式的合理性。也可以结合军事演练等素材,渗透国防教育。
图形的运动教学可借助方格纸,引导学生画出简单图形平移、旋 转后的图形,以及补全轴对称图形,感受图形变化的特征,动手操 作,动脑想象;引导学生会从平移、旋转和轴对称的角度欣赏自然界 和生活中的美;引导学生按给定比例将简单图形放大或缩小,通过前 后图形的变化,感受比例尺的意义,加深对比、比例的理解。根据学 情,可组织剪纸等活动,引导学生了解图案中的基本图形及其变化规 律,感知中华优秀传统文化,增强空间观念。鼓励学生在欣赏的基础 上学会创作设计,可以通过制作数学板报的形式,呈现学生的创作成 果,增强应用意识和创新意识。
统计与概率是义务教育阶段数学学习的重要领域之一,在小学阶 段包括“数据分类”“数据的收集、整理与表达”和“随机现象发生 的可能性"三个主题。这些内容分布在三个学段,由浅入深,相互联 系。学生在学习过程中,了解统计与概率的基础知识,感悟数据分析 的过程,形成数据意识。
“数据分类”的本质是根据信息对事物进行分类。学生经历从事 物分类到数据分类的过程,感悟如何根据事物的不同属性确定标准, 依据标准区分事物,形成不同的类。在学习统计图表时,学生将进一 步认识数据的分类,从中感悟对事物共性的抽象过程,不仅为统计学 习,也为数学学习奠定基础。
“数据的收集、整理与表达"包括数据的收集,用统计图表、平 均数、百分数表达数据。在学习过程中,让学生初步感受现实生活中 存在大量数据,其中蕴含着有价值的信息,利用统计图表和统计量可 以呈现和刻画这些信息,形成初步的数据意识。