题目是LeetCode第184场周赛的第二题,链接:查询带键的排列。具体描述可见原题。
首先就是暴力模仿法,根据题意直接模仿整个操作即可,当然这样的复杂度肯定是最高的。时间复杂度为 O ( m n ) O(mn) O(mn),空间复杂度为 O ( m ) O(m) O(m)。
JAVA版代码如下:
class Solution {
public int[] processQueries(int[] queries, int m) {
int[] P = new int[m];
for (int i = 0; i < m; ++i) {
P[i] = i + 1;
}
int[] result = new int[queries.length];
for (int i = 0; i < queries.length; ++i) {
int idx = 0;
while (idx < m) {
if (P[idx] == queries[i]) {
break;
}
else {
++idx;
}
}
result[i] = idx;
int temp = P[idx];
for (int j = idx; j >= 1; --j) {
P[j] = P[j - 1];
}
P[0] = temp;
}
return result;
}
}
提交结果如下:
然后是树状数组的方法,这里的树状数组用于记录各个位置上是否有数字,有数字即为1,否则为0,那么这样从1到i
这一段的区间和getSum(i)
得到的就是树状数组中索引为i
的数前面(包括自身)一共有多少个数,也就是说这个数在数组P
中的索引就是getSum(i)-1
。为了避免频繁的数组移动,这里开辟了一个大小为n+m+1
的树状数组,初始化的时候我们把P
中的m
个数放到树状数组的最后面(不是真的放,就是置1罢了,也就是update(n + i, 1)
)同时记录这个数值到位置的映射关系(即value2index[i] = n + i
)。然后对于queries
的每个数,做如下操作:
- 获取
queries[i]
在树状数组中的位置indexQuery = value2index[queries[i]]
- 获得
queries[i]
在数组P
中的索引getSum(indexQuery)-1
并加入结果数组 - 把
queries[i]
从树状数组中原本位置中删除(即update(indexQuery, -1)
),然后再加到新的起始位置n-i
上去(即update(n - i, 1)
),同时需要更新映射关系(value2index[queries[i]] = n - i
)
在树状数组中操作的时间复杂度为 O ( l o g ( m + n ) ) O(log(m+n)) O(log(m+n)),所以总的时间复杂度为 O ( n l o g ( m + n ) ) O(nlog(m+n)) O(nlog(m+n)),空间复杂度为 O ( m + n ) O(m+n) O(m+n)。
JAVA版代码如下:
class Solution {
// 树状数组
private int[] tree;
private int lowbit(int x) {
return x & (-x);
}
// 树状数组的更新操作,将idx位置上的数加上value
private void update(int idx, int value) {
while (idx < tree.length) {
tree[idx] += value;
idx += lowbit(idx);
}
}
// 数组数组的区间查询,返回从1到idx区间的和
private int getSum(int idx) {
int sum = 0;
while (idx > 0) {
sum += tree[idx];
idx -= lowbit(idx);
}
return sum;
}
public int[] processQueries(int[] queries, int m) {
int n = queries.length;
// 用一个树状数组,数组从1-i的区间和getSum(i)代表在i前面有多少个数(包括自身)
// 所以一个数对应到P中的真实索引就是getSum(i)-1
tree = new int[n + m + 1];
// P中的1-m这m个数到其在树状数组中索引的一个映射
int[] value2index = new int[m + 1];
for (int i = 1; i <= m; ++i) {
// 初始化,把P中m个数先放到树状数组的后m个位置
value2index[i] = n + i;
update(n + i, 1);
}
int[] result = new int[n];
for (int i = 0; i < n; ++i) {
int indexQuery = value2index[queries[i]];
result[i] = getSum(indexQuery) - 1;
// 把位置indexQuery上的数给移动到起始位置,当前位置的数删除,所以需要-1
update(indexQuery, -1);
// 放置这个被删除的数的起始位置
value2index[queries[i]] = n - i;
// 需要重新从起始位置开始更新树状数组
update(n - i, 1);
}
return result;
}
}
提交结果如下:
Python版代码如下:
class Solution:
def processQueries(self, queries: List[int], m: int) -> List[int]:
n = len(queries)
tree = [0 for _ in range(n + m + 1)]
def lowbit(x):
return x & (-x)
def update(idx, value):
while idx <= n + m:
tree[idx] += value
idx += lowbit(idx)
def getSum(idx):
s = 0
while idx > 0:
s += tree[idx]
idx -= lowbit(idx)
return s
value2index = [n + i for i in range(m + 1)]
for i in range(n + 1, n + m + 1):
update(i, 1)
result = []
for i in range(n):
indexQuery = value2index[queries[i]]
result.append(getSum(indexQuery) - 1)
update(indexQuery, -1)
update(n - i, 1)
value2index[queries[i]] = n - i
return result
提交结果如下: