零. 简介
ArrayBlockingQueue 是一个由
数组作为基础数据结构的
有界阻塞队列。出队入队使用先进先出算法,即 FIFO (first in first out)。head 是停留在队列中最长的节点,tail 停留在队列中最短的节点。从 head 出队列,从 tail 入队列。
这是一个典型的「有界缓冲区」,一个固定大小的数组持有从生产者(producers)产生的和被消费者(consumers)消费的数据。
此队列一旦创建,队列大小就固定了,不能再改变。尝试将数据加入到满队列中,将会被阻塞;尝试从空队列中取数据也同样会被阻塞。
本类提供生产者和消费者线程访问顺序的一个可选的公平策略。默认情况下,为了性能,这个访问顺序不被保证。不过,在初始化构造本类的时候,将 fairness 设置为 true,则可以保证线程访问的公平性,这样设置的坏处是降低吞吐量,好处是减少了可变性和线程的饥饿现象。
一. 代码
(1)核心变量
-
- final ReentrantLock lock;
-
- private final Condition notEmpty;
-
- private final Condition notFull;
阻塞队列实现的关键参数,一个可重入锁,和两个条件,使用经典的双状态算法(two-condition algorithm)
-
- final Object[] items;
-
-
- int takeIndex;
-
-
- int putIndex;
-
-
- int count;
一些基本参数,基础的数组对象,队头的位置,队尾的位置,队列中已有的数据量
(2)构造器
- public ArrayBlockingQueue(int capacity, boolean fair) {
- if (capacity <= 0)
- throw new IllegalArgumentException();
- this.items = new Object[capacity];
- lock = new ReentrantLock(fair);
- notEmpty = lock.newCondition();
- notFull = lock.newCondition();
- }
队列构造方法,设置固定队列大小,是否需要公平访问队列,公平锁和非公平锁由 ReentrantLock (公平锁是正常走锁排队申请流程,非公平锁先尝试获取 AQS stat 状态锁,然后才走正常锁排队申请)提供
- public ArrayBlockingQueue(int capacity) {
- this(capacity, false);
- }
默认构造方法是非公平的
(3) add 方法:新增数据
实际上是调用继承的抽象类 AbstractQueue 的 add 方法
- public boolean add(E e) {
- return super.add(e);
- }
- public boolean add(E e) {
- if (offer(e))
- return true;
- else
- throw new IllegalStateException("Queue full");
- }
上述的 offer(e) 是接口 Queue 未实现的方法,具体实现在 ArrayBlockingQueue
- public boolean offer(E e) {
- checkNotNull(e);
- final ReentrantLock lock = this.lock;
- lock.lock();
- try {
- if (count == items.length)
- return false;
- else {
- insert(e);
- return true;
- }
- } finally {
- lock.unlock();
- }
- }
如果队列还没满,则加入队尾并返回 true;
可以看出来 offer 方法如果插入不了不是进入阻塞状态,是直接返回一个 false 状态
将数据插入队尾,移动数组下标( inc(putIndex) 保证循环移动),队列总数 count 加 1,notEmpty.signal 唤醒等待拿数据的线程(在 AQS 的等待队列中的线程)
- private void insert(E x) {
- items[putIndex] = x;
- putIndex = inc(putIndex);
- ++count;
- notEmpty.signal();
- }
(4)put 方法:新增数据 (如果满了就阻塞)
- public void put(E e) throws InterruptedException {
- checkNotNull(e);
- final ReentrantLock lock = this.lock;
- lock.lockInterruptibly();
- try {
- while (count == items.length)
- notFull.await();
- insert(e);
- } finally {
- lock.unlock();
- }
- }
可以看到如果队列数据量 count == items.length 数组大小,则线程阻塞 await()
(5)poll:取数据,不是阻塞方法
- public E poll() {
- final ReentrantLock lock = this.lock;
- lock.lock();
- try {
- return (count == 0) ? null : extract();
- } finally {
- lock.unlock();
- }
- }
-
- private E extract() {
- final Object[] items = this.items;
- E x = this.<E>cast(items[takeIndex]);
- items[takeIndex] = null;
- takeIndex = inc(takeIndex);
- --count;
- notFull.signal();
- return x;
- }
如果数据为空则返回 null,不为空则返回数据,并且唤醒 notFull 状态挂起的线程
(5)take:取数据,如果为空则阻塞
- public E take() throws InterruptedException {
- final ReentrantLock lock = this.lock;
- lock.lockInterruptibly();
- try {
- while (count == 0)
- notEmpty.await();
- return extract();
- } finally {
- lock.unlock();
- }
- }
(6) drainTo 方法:字面意思就是排干,就是把数据批量导入到一个集合类中,比一个一个 poll 效率高,因为加锁次数少
- public int drainTo(Collection<? super E> c) {
- checkNotNull(c);
- if (c == this)
- throw new IllegalArgumentException();
- final Object[] items = this.items;
- final ReentrantLock lock = this.lock;
- lock.lock();
- try {
- int i = takeIndex;
- int n = 0;
- int max = count;
- while (n < max) {
- c.add(this.<E>cast(items[i]));
- items[i] = null;
- i = inc(i);
- ++n;
- }
- if (n > 0) {
- count = 0;
- putIndex = 0;
- takeIndex = 0;
- notFull.signalAll();
- }
- return n;
- } finally {
- lock.unlock();
- }
- }
三. 总结
看懂 ArrayBlockingQueue 需要先看懂 AbstractQueuedSynchronizer 和 ReentrantLock,阻塞就是靠 ReentrantLock 来实现的,而 ReentrantLock 是靠 AbstractQueuedSynchronizer 来实现加锁和释放锁。主要的算法就是上文提到的 two-condition algorithm,这个算法应该在学生时代《操作系统》课程上见过很多次了
转发自:https://blog.csdn.net/wenniuwuren/article/details/51283505