机器学习(七)使用pandas库进行数据分析_——统计信息和离散化

本文介绍了在机器学习中如何利用pandas库进行数值型数据的统计分析,包括计算最大值、最小值、期望和方差。同时,详细阐述了如何运用pandas的cut函数进行数据离散化处理。
摘要由CSDN通过智能技术生成
 在特征工程中,对于数值型数据(比如年龄为25岁、31岁。。,商店某个时间段的销量为20W件等等),

通常要对这些数值型数据进行统计分析,比如求取它们的最大最小值、期望方差等,pandas库在数据分析中非常好用。
对 数值型数据进行离散化,也用到pandas的cut函数,具体操作如下代码:

# -*- coding: utf-8 -*-
"""
Created on Wed Oct 26 15:34:48 2016

@author: sirius
"""

import pandas as pd
import numpy as np

"""
数据的统计值
"""
series=pd.Series(np.random.randn(500))
series.describe(percentiles=[0.05,0.25,0.75,0.95])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值