联邦学习学习(模型理解)


记录看完论文后对联邦学习方法的理解和总结,有理解不对的欢迎大家交流和指正

FedDF(24/8/27)

论文:Ensemble Distillation for Robust Model Fusion in Federated Learning
主要解决问题:客户端异构(数据异构、模型异构)导致性能下降
创新点:使用无标签数据、或者生成器生成的数据通过知识蒸馏融合客户端知识,在保证用户数据隐私的同时降低了数据异构、模型异构的影响且增强了全局模型的性能。且具有较好的鲁棒性。
理解模型:模型整个流程
一.本地模型算法是同构的但是数据是异构的:
在这里插入图片描述在这里插入图片描述
模型是这样的,首先有K个客户端,一共进行T轮客户端和服务端的数据传输,每轮会随机抽出C(这个是个比例)的客户端激活进行训练(也就是 S t S_{t} St个激活,看上面伪代码)对于每一轮通信前,本地模型会进行本地模型训练,这个训练使用的是本地独有的数据,因此每个模型训练出来的效果大同小异。本地模型训练完后会进行一轮通信,将本地模型的参数传送给服务端模型。服务端接收到 S t S_{t} St个本地模型参数后会根据数据量对本地模型参数进行加权平均。(到此就是一趟Fedavg了)接着以这个全局模型为学生模型。以传输上来的本地模型为教师模型。接着直接使用(1)其他范围的无标签数据。(2)生成器生成的数据(这里绕过了客户端数据,保护了隐私,虽然没有使用到客户端数据,但是这里仍然达到了较好的蒸馏效果)
数据通过教师模型,接着得到若干个软标签(几个概率)最后对这些软标签进行加权平均,得到一个全局的软标签。同时数据也通过前面生成的全局模型,同样也生成一个软标签,然后计算KL损失,优化全局模型。这样集中式知识蒸馏就结束了。知识蒸馏后的全局模型。相对于Fedavg这个模型相当于再通过软标签修正了一下模型。
一.本地模型算法是异构的但是数据是异构的:
在这里插入图片描述在这里插入图片描述

若本地模型算法是异构的,就不能直接对各个客户端模型进行简单的加权平均获得全局模型了,因为算法不同网络结构也不同,参数数量都对应不上,没办法加权平均。这里相对于上面主要的应对措施是,若干个客户端,若干种算法,将传输上来的客户端按照算法种类分类。同一类的模型进行上面的蒸馏操作。最后将若干类的最终模型分配给指定类别的客户端,实现客户端模型更新

持续更新

持续更新

持续更新

持续更新

持续更新

持续更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码飞速跑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值