5 - 1 判断题

1.一棵有124个结点的完全二叉树,其叶结点个数是确定的。T


什么是完全二叉树?(会的可以跳过)

完全二叉树:一棵深度为k的有n个结点的二叉树,对其结点按从上至下,从左至右的顺序进行编号,如果编号为i的结点与满二叉树中编号为i的结点在二叉树的位置相同,则这棵二叉树为完全二叉树。

在这里插入图片描述

因为一棵非空二叉树的第i层上最多有  2的(i-1)次方个结点,所以可以推广到完全二叉树

性质1:一棵完全二叉树的第i层上最多有  2的(i-1) 次方个结点

因为一棵深度为k的二叉树中,最多有  2的k次方-1  个结点,也可以推广到完全二叉树

性质2:一棵深度为k的完全二叉树中,最多有  2的k次方-1  个结点

性质3:具有n个结点的完全二叉树的深度k为 log₂n向下取整,再+ 1。

例:有5个结点,log₂n向下取整为2,再+1为3。


性质3可得,log₂124 向下取整  =6,再+1为7。

所以该二叉树的深度为7。

性质2可得,深度为6的完全二叉树有2的6次方-1个结点,即63个结点。

总共有124个结点,那么还剩下124-63=61个结点,分布在第7层。

性质1可得,第7层最多有2的(i-1)次方个结点,也就是2的6次方,最多64个,可以容纳下61个结点。

下面计算叶结点,第7层的结点全是叶节点,有61个,剩下的叶节点在第6层。

第7层的每2个结点是第6层的1个结点的左右孩子,因为61是奇数,所以最后还剩下一个结点对应第6层的一个结点。

(61-1)/2=30,即第6层有30个结点有左右孩子,有1个结点有1个孩子,第六层有2的5次方个结点,也就是32个,那么第6层没有孩子的结点有32-30-1=1个,这个结点是叶节点之一。

所以该完全二叉树共有61+1=62个叶节点

2.二叉树中序线索化后,不存在空指针域。 F

(无特殊说明的话,是没有头结点的,如果有头结点的话,为T)

第一个结点无前驱,最后一个结点无后继。

构造一个二叉树就偷点懒,用这个的结果(这叫复习/doge):

4-14 还原二叉树&&4-15 根据后序和中序遍历输出先序遍历

生成的树:

 咱们就中序线索化这个。

代码:(有头结点的中序线索二叉树,不存在空指针域)

#include<iostream>

using namespace std;

typedef struct Tnode* Tree;
typedef struct Tnode{
    char data;
    Tree lchild;
    Tree rchild;
    unsigned ltag;
    unsigned rtag;
};

Tree get(char s1[], char s2[], int n) {
    if (n <= 0) {
        return NULL;
    }
    Tree tree = (Tree)malloc(sizeof(struct Tnode));
    tree->lchild = NULL;
    tree->rchild = NULL;
    tree->ltag = 0;
    tree->rtag = 0;
    tree->data = s1[0];

    int i;
    for (i = 0; s2[i] != s1[0]; i++);
    tree->lchild = get(s1+1, s2, i);
    tree->rchild = get(s1 + i + 1, s2 + i + 1, n - i - 1);
    return tree;

}

int len(Tree tree) {
    if (tree == NULL) {
        return 0;
    }
    int left = len(tree->lchild);
    int right = len(tree->rchild);
    return (left >= right ? left : right) + 1;
}

Tree pre;

void InTreading(Tree tree) {
    if (tree) {
        InTreading(tree->lchild);
        if (tree->lchild == NULL) {
            tree->ltag = 1;
            tree->lchild = pre;
        }
        if (pre->rchild == NULL) {
            pre->rtag = 1;
            pre->rchild = tree;
        }
        pre = tree;
        InTreading(tree->rchild);
    }
}


Tree InOrderThr(Tree tree) {
    Tree head = (Tree)malloc(sizeof(struct Tnode));
    head->lchild = 0;
    head->rtag = 1;
    head->rchild = head;

    if (!tree) {
        head->lchild = head;
    }
    else {
        head->lchild = tree;
        pre = head;
        InTreading(tree);

        pre->rchild = head;
        pre->rtag = 1;
        head->rchild = pre;
    }
    return head;
}



Tree InpostNode(Tree p) {
    Tree post;
    post = p->rchild;
    if (p->rtag != 1) {
        while (post->ltag == 0) {
            post = post->lchild;
        }
    }
    return post;
}

void Search(Tree tree) {
    Tree temp;
    temp = tree->lchild;
    while (temp->ltag == 0 && temp != tree) {
        temp = temp->lchild;
    }
    while(temp!=tree){
        printf("%c ", temp->data);
        temp = InpostNode(temp); 
    }
}

int main()
{
    int n;
    cin >> n;
    char s1[51], s2[51];
    for (int i = 0; i < n; i++) {
        cin >> s1[i];
    }
    for (int i = 0; i < n; i++) {
        cin >> s2[i];
    }
    Tree st= get(s1, s2, n);
    st = InOrderThr(st);
    Search(st);
    return 0;
}

3.对N(≥2)个权值均不相同的字符构造哈夫曼树,则树中任一非叶结点的权值一定不小于下一层任一结点的权值。T

解析:考察哈弗曼树的构造方法,哈弗曼树的构造思想就是贪心的思想,每次选择权值最小的两个节点来形成新的节点,自底向上建树,因此对于一棵哈弗曼树来说,树中任一非叶节点的权值一定不小于下一层的任意节点的权值。

在构造哈夫曼树时会遇到两种情况,一种是造成树的高度增加,一种是不增加:

高度增加的情况:1,2,3,4。即每向树增加结点,树高加一

高度不增加的情况:比如6,7,8,9。在增加8和9时,树高不会立刻增加(就当成是树吧)

无论是这两种那种情况,都满足题意 

4.哈夫曼编码是一种最优的前缀码。对一个给定的字符集及其字符频率,其哈夫曼编码不一定是唯一的,但是每个字符的哈夫曼码的长度一定是唯一的。F

哈夫曼编码一般左0右1

比如这个哈夫曼树:

 哈夫曼编码:

A:00

B:01

C:1

我们在构造时也可能会这样:

 这样构造也是对的,但是哈夫曼编码就不一样了:

 哈夫曼编码:

A:10

B:11

C:0

所以,对一个给定的字符集及其字符频率,哈夫曼编码不一定是唯一的。

因为可能有这种情况:字符集A,B,C,D出现的次数为1,2,2,2。这种情况每个字符的哈夫曼码的长度不一定是唯一的

5.对于一个有N个结点、K条边的森林,不能确定它共有几棵树。F

对于一棵树,有这样的性质:节点数-边数=1。

例如:

 有5个结点,4条边

森林是0棵或有限棵不相交的树的集合,比如森林中有3棵树,那么每棵树的结点数比边数多1,那么三棵树的总结点数就比总边数多3。由此可得,对于一个有N个结点、K条边的森林,它有N-K棵树

6.树的后根序遍历序列等同于它所对应二叉树的中序遍历序列。T

树的先序遍历与其转换成二叉树的先序遍历的结果相同;

树的后序遍历与其转换成二叉树的中序遍历的结果相同;

7.二叉树可以用二叉链表存储,树无法用二叉链表存储。F

一个结点的第一个孩子(长子)作为该节点的左孩子,这个结点的兄弟这个结点作为右孩子。

8.将一棵树转成二叉树,根结点没有左子树。F

根节点没有兄弟,所以根节点没有右子树

9.用邻接矩阵法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。T

占用的存储空间数只与图中结点个数有关,而与边数无关,空间代价为O(n*n);

10.用一维数组G[]存储有4个顶点的无向图如下:

G[] = { 0, 1, 0, 1, 1, 0, 0, 0, 1, 0 }

则顶点2和顶点0之间是有边的。T

下三角矩阵

  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值