简单的归纳下三种常见表示时间复杂度的符号
O,可以理解为上界
存在大于0的常数c和非负整数n₀,
使得:对于所有的n>=n₀来说,t(n)<=cg(n)
例如:100n+5<=100n+n(当n>=5)=101n<=101n²
此时 c=101,n₀=5
Ω, 可以理解为下界
存在大于0的常数c和非负整数n₀,
使得:对于所有的n>=n₀来说,t(n)>=cg(n)
例如:当n>=0时,n³>=n²
此时 c=1,n₀=0
Θ ,可以理解为确定的界(并非总能找到)
存在大于的常数c₁,c₂,和非负整数n₀,
使得:对于所有的n>=n₀来说,c₂g(n)<=t(n)<=c₁g(n)
例如:当n>=0, 1/2n(n-1)=1/2n²-1/2n<=1/2n²
当n>=2, 1/2n(n-1)=1/2n²-1/2n>=1/2n²-1/2n1/2n=1/4n²
此时,c₁=1/2,c₂=1/4,n₀=2