C++之STL-priority_queue和仿函数的讲解

目录

一、priority_queue的介绍和使用

1.1 priority_queue的介绍

1.2 priority_queue的基本接口

二、仿函数的介绍

2.1 基本概念

2.2 适用场景

三、模拟实现priority_queue

3.1 向上调整算法

3.2 向下调整算法

3.3 整体框架


一、priority_queue的介绍和使用

1.1 priority_queue的介绍

  1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。
  2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。
  3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
  4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:

empty():检测容器是否为空
size():返回容器中有效元素个数
front():返回容器中第一个元素的引用
push_back():在容器尾部插入元素 

pop_back():删除容器尾部元素

     5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类           实例化指定容器类,则使用vector。
     6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用           算法函数make_heap、push_heap和pop_heap来自动完成此操作。

1.2 priority_queue的基本接口

函数声明接口说明

priority_queue()/priority_queue(first,

last)
构造一个空的优先级队列

empty( )

检测优先级队列是否为空,是返回true,否则返

false

top( )返回优先级队列中最大(最小元素),即堆顶元素

push(x)在优先级队列中插入元素x

pop()删除优先级队列中最大(最小)元素,即堆顶元素

 如有不清晰的,可以去查看http://cplusplus.com具体的文档

二、仿函数的介绍

2.1 基本概念

       仿函数是一种可被调用的对象,它可以像函数一样被使用。在C++中,仿函数是一种重载了函数调用运算符 operator() 的类或结构体,它可以被当作函数来调用,接受参数并返回结果。
       在刚刚我们所讲的priority_queue就可以看到仿函数的使用:

       看这个 less 这个模板参数,它其实就是一个仿函数接口,这里我们简单的介绍一下less

        less这个仿函数实现的功能其实就是让我们的优先队列变成大堆,与之相对应的就是greater这个仿函数,其被引入进优先队列的作用是让其变成小堆。

大概懂了仿函数是个什么样的东西,那我们大概的来模拟实现less一下吧。

class less
{
   bool opeartor()(int x,int y)
    {
        return x<y;
    }
}

       写仿函数需要注意,他一定是用class进行修饰的,且其主要是对()进行的重载,我们写的这个less只适用于整型未免太单调了,我们不妨给他加个模板。

template<class T>
class less
{
   bool opeartor()(T x,T y)
    {
        return x<y;
    }
}

2.2 适用场景

  1. 首先就是priority_queue这个容器需要仿函数这个接口,当我们使用自定义类型时,需要我们自己编写一个仿函数接口。
  2. 再比如说使用 sort 时,其同样有一个仿函数的接口,举例:

实现一个升序排序:

vector<int> st={1,9,8,5,6,7,3,2,1,4};

sort(st.begin(),st.end(),greater<int>);

三、模拟实现priority_queue

       要知道priority_queue实际上是一个堆,既然是堆,那就会涉及到我们的向上调整算法和向下调整算法,这也是我们的主要编写内容。

3.1 向上调整算法

        void adjust_up(int child)
        {
            int parent = (child - 1) / 2;
            while (parent >= 0)
            {
                if (comp(c[parent], c[child]))
                {
                    std::swap(c[parent], c[child]);
                }
                else
                    break;
                child = parent;
                parent = (child - 1) / 2;
            }
        }

       这里可以发现我们的比较方法是使用的仿函数,这样就可以根据我们传入的仿函数的不同来定义不同的堆,是不是很方便。
这里如果不是很懂的话可以去查看一下堆的知识。

3.2 向下调整算法

        void adjust_down(int parent)
        {
            int child = parent * 2 + 1;
            while (child < size())
            {
                if (child+1<size()&&comp(c[child], c[child+1]))
                {
                    child += 1;
                }
                if (comp(c[parent], c[child]))
                {
                    std::swap(c[child], c[parent]);
                }
                else
                    break;
                parent = child;
                child = parent * 2 + 1;
            }
        }

可不要忘了向下调整算法的边界判断哦。

3.3 整体框架

接口实现方面,和之前的内容差不多,这里我直接给大家上代码

namespace bit
{
    template <class T, class Container = vector<T>, class Compare = less<T> >

    class priority_queue

    {

    public:
        void adjust_up(int child)
        {
            int parent = (child - 1) / 2;
            while (parent >= 0)
            {
                if (comp(c[parent], c[child]))
                {
                    std::swap(c[parent], c[child]);
                }
                else
                    break;
                child = parent;
                parent = (child - 1) / 2;
            }
        }
        void adjust_down(int parent)
        {
            int child = parent * 2 + 1;
            while (child < size())
            {
                if (child+1<size()&&comp(c[child], c[child+1]))
                {
                    child += 1;
                }
                if (comp(c[parent], c[child]))
                {
                    std::swap(c[child], c[parent]);
                }
                else
                    break;
                parent = child;
                child = parent * 2 + 1;
            }
        }
        priority_queue()
        {}

        template <class InputIterator>

        priority_queue(InputIterator first, InputIterator last)
            :c(first,last)
        {
            for (int i = (size() - 1 - 1) / 2; i >= 0; i--)
            {
                adjust_down(i);
            }
        }

        bool empty() const
        {
            return c.empty();
        }

        size_t size() const
        {
            return c.size();
        }

        const T& top() const
        {
            return c[0];
        }

        void push(const T& x)
        {
            c.push_back(x);
            adjust_up(size() - 1);
        }

        void pop()
        {
            std::swap(c[0], c[size() - 1]);
            c.pop_back();
            adjust_down(0);
        }

    private:

        Container c;

        Compare comp;

    };

};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值