EverydayOneCat
📦🙀正方?圓滾?
🛏️💤🐈💨
知识点
1.笔记
2.两个正态总体的检验
例:某小麦品种经过4代选育,从第5代和第6代中分别抽出10株得到它们株高的观测值分别为66,65,66,68,62,65,63,66,68,62和64,61,57,65,65,63,62,63,64,60,试检验株高这一性状是否已达到稳定(α=0.05)?
思路:先检验方差后检验均值
SAS代码:
data ex;
input c$ x@@;
cards;
a 66 a 65 a 66 a 68 a 62 a 65 a 63 a 66 a 68 a 62
b 64 b 61 b 57 b 65 b 65 b 63 b 62 b 63 b 64 b 60
;
proc ttest;class c;var x;
run;
ttest表示T检验,检验两个水平的,每个水平的都符合正态分布。
class表示分类变量(属性)
先看方差检验
Pr>F概率大于0.05,接受原假设H0:方差相等
再看均值检验
T检验概率比0.05小,拒绝原假设,认为两均值不等,第五代和第六代株高有显著性差异,说明株高性状没有达到稳定。
3.两组样本非参数检验
非参数检验(non-parametric test)又称为分布自由检验,一种与总体分布状况无关的检验方法,它不依赖于总体分布的形式。
3.1配对样本数据符号检验法
例1 甲乙两人分析同一物质中某成份的含量,得到观测数据(单位:g)为
甲14.7,15.0,15.2,14.8,15.5,14.6,14.9,14.8,15.1,15.0
乙14.6,15.1,15.4,14.7,15.2,14.7,14.8,14.6,15.2,15.0
试在显著性水平为0.05时用符号检验法检验两人的分析无显著差异.
SAS代码:
data ex; /*ex为数据名*/
input x1 x2 @@;
y=x1-x2; /*y用于存放x1和x2的差值*/
cards; /*数据卡*/
14.7 14.6 15.0 15.1 15.2 15.4 14.8 14.7 15.5
15.2 14.6 14.7 14.9 14.8 14.8 14.6 15.1 15.2
15.0 15.0
;
proc univariate;/*proc univariate表示调用模块
univariate*/
var y; /*var y表示调用变量y*/
run; /*执行命令*/
结果分析: 由Tests for Location: Mu0=0表可知,M(Sign)的值为05,pr>M的值为1.00>0.05,未落在拒绝域里,故接受原假设H,认为两人的分析无显著差异。
3.2总体中位数的符号检验法
为了判断某个总体的中位数是否与已知数m有显著的差异
例2 试验品种猪在17个试验点的月增重(单位:kg)见表:
试问,月增重与35是否有显著性差异?
SAS代码:
data ex;
input x @@;
y=x-35; /*x的值与35的差值作为观测变量值*/
cards;
51 40 43 48 23 26 30 34
25 40 41 39 42 40 43 30
34
;
proc univariate;var y;
run;
结果分析:M(Sign)的值为1.5,Pr >= |M|值为0.6291>0.05,故未落在拒绝域里,因此接受原假设,认为该品种猪月增重的中位数与35无显著差异。
3.3成组样本数据的秩和检验法
例3 测定两个马铃薯品种的淀粉含量(%),得到A品种的观测值为12.6, 12.4,B品种的观测值为12.4,12.1,12.5,12.7,12.6,13.1试在显著性水平为0.05时用秩和检验法检验两品种的淀粉含量无显著差异。
这里一个2个一个6个不是一一配对,我们用到秩和检验法。
SAS代码:
data ex;
do a=1 to 2;
input n @@;/*a因素有两个水平,由于每个水平样本个数不等,故先输入表示样本个数的变量n*/
do i=1 to n;input x @@;/*每个水平样本从1输到n,再输入数据x*/
output;
end;
end; /*计算公式两连加号*/
cards;
2 12.6 12.4
6 12.4 12.1 12.5 12.7 12.6 13.1
;
proc npar1way wilcoxon;
/*调用模块npar1way,数据对因素a的秩和检验模型*/
class a;
var x;
run;
结果分析:
Kruskal-Wallis Test这一部分,自由度DF为1,Chi-Square value 为Chi-Square且Prob > Chi-Square 为0.7358>0.05,接受原假设H0,认为两品种的淀粉含量没有显著性差异,淀粉含量相同。
4.单因素方差分析
例4《切胚乳试验》用小麦种子进行切胚乳试验,设计分3种处理,同期播种在条件较为一致的花盆内,出苗后每盆选留2株,成熟后测量每株粒重(单位:g),得到数据如下:
处理 | 每株粒重 |
---|---|
未切去胚乳 | 21,29,24,22,25,30,27,26 |
切去一半胚乳 | 20,25,25,23,29,31,24,26,20,21 |
切去全部胚乳 | 24,22,28,25,21,26 |
分析粒重和处理方式是否有关。
SAS代码:
data ex;do a=1 to 3;input n @@;
do i=1 to n; input x @@;
Output;end;end;
Cards;
8 21 29 24 22 25 30 27 26
10 20 25 25 23 29 31 24 26 20 21
6 24 22 28 25 21 26
;
proc anova; class a;model x=a;
means a/duncan;run;
根据此做出来表格: