UVaOJ-10791-Minimum Sum LCM 解题报告

       分解质因数题。题意:现在给你一个数,然后请你找到两个或两个以上的数,使得它们的最小公倍数是给你的这个数,要求你找到的几个数的和尽量小,输出这个和。


       我的解题思路:看起来很难的样子,这里涉及到求最小公倍数的原理。在几个数里面求最小公倍数,要把这几个数都分解不同的质因数,将每一个质因数次数最大项相乘就得到了这几个数的最小公倍数。比如:求108,28和42的最小公倍数,108 = 2^2 × 3^3,28 = 2^2 × 7,42 = 2 × 3 × 7。这里面不同的质因数分别为2,3和7。2的最高次项为2^2,3的最高次项为3^3,7的最高次项就是7。因此它们的最小公倍数为2^2 × 3^3 × 7 = 756。知道了最小公倍数的计算原理之后就可以思考得出解决办法了。将最小公倍数分解成不同质因数的幂的乘积,每一个不相同的质因数的幂就是找到的一个数,这几个数满足最小公倍数是给的数并且这几个数的和必定是最小的,因为它们彼此之间公约数都是1。注意:特殊情况下只能分解出一个不同的质因数的幂,这个时候答案就是最小公倍数+1,因为1与任何正整数的最小公倍数都是那个正整数。并且最小公倍数为1也是一个特殊情况,答案是2。另外要注意给的最小公倍数是不会超过int范围的,但是答案有可能超过int范围哦。


       我的解题代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>

using namespace std;

const int N = 50000;

bool isprime[N];
int primes[N], pn;
int prmft[N], power[N], pfn;    //分解的不同质因数,质因数的幂,不同质因数个数
long long ans;                  //答案可能超过int范围
int x;

void InitRead();

void DataProcess();

void FastSieve(int maxn);

void Factor(int num);       //分解质因数并计算答案

int main()
{
    int tn = 1;
    InitRead();
    while (~scanf("%d", &x))
    {
        if (x == 0) break;
        printf("Case %d: ", tn++);
        DataProcess();
    }
    return 0;
}

void InitRead()
{
    memset(isprime, true, sizeof(isprime));
    isprime[0] = isprime[1] = false;
    pn = 0;
    FastSieve(N - 1);
    return;
}

void DataProcess()
{
    ans = 0;
    Factor(x);
    if (pfn == 1) ans += 1;     //如果只能分解出一种不同的质因数
    printf("%lld\n", x == 1 ? 2 : ans); //对于最小公倍数为1还需要特判
    return;
}

void FastSieve(int maxn)
{
    for (int i=2; i<=maxn; ++i)
    {
        if (isprime[i]) primes[pn++] = i;
        for (int j=0; j<pn; ++j)
        {
            if (i * primes[j] > maxn) break;
            isprime[i * primes[j]] = false;
            if (i % primes[j] == 0) break;
        }
    }
    return;
}

void Factor(int num)
{
    memset(power, 0, sizeof(power));
    pfn = 0;
    for (int i=0; i<pn; ++i)
    {
        if (num == 1) break;
        if (num % primes[i] == 0)
        {
            int temp = 1;
            while (num % primes[i] == 0)
            {
                num /= primes[i];
                temp *= primes[i];
                power[pfn]++;
            }
            ans += temp;
            prmft[pfn++] = primes[i];
        }
    }
    if (num != 1)
    {
        power[pfn]++;
        prmft[pfn++] = num;
        ans += num;
    }
    return;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值