分解质因数题。题意:现在给你一个数,然后请你找到两个或两个以上的数,使得它们的最小公倍数是给你的这个数,要求你找到的几个数的和尽量小,输出这个和。
我的解题思路:看起来很难的样子,这里涉及到求最小公倍数的原理。在几个数里面求最小公倍数,要把这几个数都分解不同的质因数,将每一个质因数次数最大项相乘就得到了这几个数的最小公倍数。比如:求108,28和42的最小公倍数,108 = 2^2 × 3^3,28 = 2^2 × 7,42 = 2 × 3 × 7。这里面不同的质因数分别为2,3和7。2的最高次项为2^2,3的最高次项为3^3,7的最高次项就是7。因此它们的最小公倍数为2^2 × 3^3 × 7 = 756。知道了最小公倍数的计算原理之后就可以思考得出解决办法了。将最小公倍数分解成不同质因数的幂的乘积,每一个不相同的质因数的幂就是找到的一个数,这几个数满足最小公倍数是给的数并且这几个数的和必定是最小的,因为它们彼此之间公约数都是1。注意:特殊情况下只能分解出一个不同的质因数的幂,这个时候答案就是最小公倍数+1,因为1与任何正整数的最小公倍数都是那个正整数。并且最小公倍数为1也是一个特殊情况,答案是2。另外要注意给的最小公倍数是不会超过int范围的,但是答案有可能超过int范围哦。
我的解题代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
const int N = 50000;
bool isprime[N];
int primes[N], pn;
int prmft[N], power[N], pfn; //分解的不同质因数,质因数的幂,不同质因数个数
long long ans; //答案可能超过int范围
int x;
void InitRead();
void DataProcess();
void FastSieve(int maxn);
void Factor(int num); //分解质因数并计算答案
int main()
{
int tn = 1;
InitRead();
while (~scanf("%d", &x))
{
if (x == 0) break;
printf("Case %d: ", tn++);
DataProcess();
}
return 0;
}
void InitRead()
{
memset(isprime, true, sizeof(isprime));
isprime[0] = isprime[1] = false;
pn = 0;
FastSieve(N - 1);
return;
}
void DataProcess()
{
ans = 0;
Factor(x);
if (pfn == 1) ans += 1; //如果只能分解出一种不同的质因数
printf("%lld\n", x == 1 ? 2 : ans); //对于最小公倍数为1还需要特判
return;
}
void FastSieve(int maxn)
{
for (int i=2; i<=maxn; ++i)
{
if (isprime[i]) primes[pn++] = i;
for (int j=0; j<pn; ++j)
{
if (i * primes[j] > maxn) break;
isprime[i * primes[j]] = false;
if (i % primes[j] == 0) break;
}
}
return;
}
void Factor(int num)
{
memset(power, 0, sizeof(power));
pfn = 0;
for (int i=0; i<pn; ++i)
{
if (num == 1) break;
if (num % primes[i] == 0)
{
int temp = 1;
while (num % primes[i] == 0)
{
num /= primes[i];
temp *= primes[i];
power[pfn]++;
}
ans += temp;
prmft[pfn++] = primes[i];
}
}
if (num != 1)
{
power[pfn]++;
prmft[pfn++] = num;
ans += num;
}
return;
}