1.题目描述:
H 城是一个旅游胜地,每年都有成千上万的人前来观光。
为方便游客,巴士公司在各个旅游景点及宾馆,饭店等地都设置了巴士站并开通了一些单程巴士线路。
每条单程巴士线路从某个巴士站出发,依次途经若干个巴士站,最终到达终点巴士站。
一名旅客最近到 HH 城旅游,他很想去 S 公园游玩,但如果从他所在的饭店没有一路巴士可以直接到达 S公园,则他可能要先乘某一路巴士坐几站,再下来换乘同一站台的另一路巴士,这样换乘几次后到达 S 公园。
现在用整数 1,2,…N给 H 城的所有的巴士站编号,约定这名旅客所在饭店的巴士站编号为 1,S 公园巴士站的编号为 N。
写一个程序,帮助这名旅客寻找一个最优乘车方案,使他在从饭店乘车到 S 公园的过程中换乘的次数最少。
2.输入格式
第一行有两个数字 M 和 N,表示开通了 M 条单程巴士线路,总共有 N 个车站。
从第二行到第 M+1 行依次给出了第 1条到第 M 条巴士线路的信息,其中第 i+1 行给出的是第 i 条巴士线路的信息,从左至右按运行顺序依次给出了该线路上的所有站号,相邻两个站号之间用一个空格隔开。
3.输出格式
共一行,如果无法乘巴士从饭店到达 S 公园,则输出 NO
,否则输出最少换乘次数,换乘次数为 0 表示不需换车即可到达。
数据范围
1≤M≤100,
2≤N≤500。
输入样例:
3 7
6 7
4 7 3 6
2 1 3 5
输出样例:
2
4.题解
方法一:bfs
因为同一条路线上的各个站点等效且为单向路线,所以可以将同一路线上的各站点互相连接,若站点1能够到达N,则使用宽度搜索即可求出最短路(换乘=最短路-1).
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=510;
int m,n;
bool g[N][N];//标记两个站点是否在同一路线
int dist[N];
int stop[N];
int q[N];
void bfs()//宽搜
{
int hh=0,tt=0;
memset(dist,0x3f,sizeof dist);
q[0]=1;
dist[1]=0;
while(hh<=tt)
{
int t=q[hh++];
for(int i=1;i<=n;i++){
if(g[t][i]&&dist[i]>dist[t]+1){
dist[i]=dist[t]+1;
q[++tt]=i;
}
}
}
}
int main()
{
cin>>m>>n;
string op;
getline(cin,op);
while(m--){
getline(cin,op);
stringstream str(op);//stringstream函数是C++提供的另一个字串型的串流(stream)物件
int cnt=0,p; //stringstream是字符串流,经常被我用来作数据切分或者类型转化
while(str>>p)stop[cnt++]=p;
for(int j=0;j<cnt;j++){
for(int k=j+1;k<cnt;k++){
g[stop[j]][stop[k]]=true;
}
}
}
bfs();
if(dist[n]==0x3f3f3f3f)cout<<"NO"<<endl;
else cout<<max(dist[n]-1,0)<<endl;
return 0;
}
方法2:dijkstra朴素版
#include<bits/stdc++.h>
using namespace std;
const int N=510;
int m,n;
int g[N][N];
int dist[N];
int stop[N];
bool st[N];
int dijkstra()
{
memset(dist,0x3f,sizeof dist);
dist[1]=0;
for(int i=0;i<n-1;i++){
int t=-1;
for(int j=1;j<=n;j++){
if(!st[j]&&(t==-1||dist[t]>dist[j])){
t=j;
}
}
for(int j=1;j<=n;j++){
dist[j]=min(dist[j],dist[t]+g[t][j]);
}
st[t]=true;
}
return dist[n];
}
int main()
{
cin>>m>>n;
memset(g,0x3f,sizeof g);
string op;
getline(cin,op);
while(m--){
getline(cin,op);
stringstream str(op);
int cnt=0,p;
while(str>>p)stop[cnt++]=p;
for(int j=0;j<cnt;j++){
for(int k=j+1;k<cnt;k++){
g[stop[j]][stop[k]]=true;
}
}
}
int w=dijkstra();
if(w*2>0x3f3f3f3f)cout<<"NO"<<endl;
else cout<<w-1<<endl;
return 0;
}
方法3:spfa
本题也可使用spfa算法,复杂度较低,本题的关键在于建图。