一.1.最优乘车 《bfs+dijkstra》——(图论进阶)单源最短路建图方式

1.题目描述

H 城是一个旅游胜地,每年都有成千上万的人前来观光。

为方便游客,巴士公司在各个旅游景点及宾馆,饭店等地都设置了巴士站并开通了一些单程巴士线路。

每条单程巴士线路从某个巴士站出发,依次途经若干个巴士站,最终到达终点巴士站。

一名旅客最近到 HH 城旅游,他很想去 S 公园游玩,但如果从他所在的饭店没有一路巴士可以直接到达 S公园,则他可能要先乘某一路巴士坐几站,再下来换乘同一站台的另一路巴士,这样换乘几次后到达 S 公园。

现在用整数 1,2,…N给 H 城的所有的巴士站编号,约定这名旅客所在饭店的巴士站编号为 1,S 公园巴士站的编号为 N。

写一个程序,帮助这名旅客寻找一个最优乘车方案,使他在从饭店乘车到 S 公园的过程中换乘的次数最少。

2.输入格式

第一行有两个数字 M 和 N,表示开通了 M 条单程巴士线路,总共有 N 个车站。 

从第二行到第 M+1 行依次给出了第 1条到第 M 条巴士线路的信息,其中第 i+1 行给出的是第 i 条巴士线路的信息,从左至右按运行顺序依次给出了该线路上的所有站号,相邻两个站号之间用一个空格隔开。

3.输出格式

共一行,如果无法乘巴士从饭店到达 S 公园,则输出 NO,否则输出最少换乘次数,换乘次数为 0 表示不需换车即可到达。

数据范围

1≤M≤100,
2≤N≤500。

输入样例:

3 7
6 7
4 7 3 6
2 1 3 5

输出样例:

2

4.题解

方法一:bfs

因为同一条路线上的各个站点等效且为单向路线,所以可以将同一路线上的各站点互相连接,若站点1能够到达N,则使用宽度搜索即可求出最短路(换乘=最短路-1).

 

 代码:

#include<bits/stdc++.h>
using namespace std;
const int N=510;
int m,n;
bool g[N][N];//标记两个站点是否在同一路线
int dist[N];
int stop[N];
int q[N];

void bfs()//宽搜
{
	int hh=0,tt=0;
	memset(dist,0x3f,sizeof dist);
	q[0]=1;
	dist[1]=0;
	
	while(hh<=tt)
	{
		int t=q[hh++];
		for(int i=1;i<=n;i++){
			if(g[t][i]&&dist[i]>dist[t]+1){
				dist[i]=dist[t]+1;
				q[++tt]=i;
			}
		}
	}
}
int main()
{
	cin>>m>>n;
	string op;
	getline(cin,op);
	while(m--){
		getline(cin,op);
		stringstream str(op);//stringstream函数是C++提供的另一个字串型的串流(stream)物件
		int cnt=0,p;         //stringstream是字符串流,经常被我用来作数据切分或者类型转化
		while(str>>p)stop[cnt++]=p;
		for(int j=0;j<cnt;j++){
			for(int k=j+1;k<cnt;k++){
				g[stop[j]][stop[k]]=true;
			}
		}
	}
	bfs();
	if(dist[n]==0x3f3f3f3f)cout<<"NO"<<endl;
	else cout<<max(dist[n]-1,0)<<endl;

	return 0;
}

方法2:dijkstra朴素版

#include<bits/stdc++.h>
using namespace std;
const int N=510;
int m,n;
int g[N][N];
int dist[N];
int stop[N];
bool st[N];

int dijkstra()
{
	memset(dist,0x3f,sizeof dist);
	dist[1]=0;
	
	for(int i=0;i<n-1;i++){
		int t=-1;
		for(int j=1;j<=n;j++){
			if(!st[j]&&(t==-1||dist[t]>dist[j])){
				t=j;
			}
		}
		for(int j=1;j<=n;j++){
			dist[j]=min(dist[j],dist[t]+g[t][j]);
		}
		st[t]=true;
	}
	return dist[n];
}
int main()
{
	
	cin>>m>>n;
	memset(g,0x3f,sizeof g);
	string op;
	getline(cin,op);
	while(m--){
		getline(cin,op);
		stringstream str(op);
		int cnt=0,p;
		while(str>>p)stop[cnt++]=p;
		for(int j=0;j<cnt;j++){
			for(int k=j+1;k<cnt;k++){
				g[stop[j]][stop[k]]=true;
			}
		}
	}
	int w=dijkstra();
	if(w*2>0x3f3f3f3f)cout<<"NO"<<endl;
	else cout<<w-1<<endl;
	return 0;
}

 方法3:spfa

本题也可使用spfa算法,复杂度较低,本题的关键在于建图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值