class Solution {
public:
int maxSubArray(vector<int>& nums) {
//最大=最优解=dp,子数组=dp
//dp[i]代表以当前数字为结尾的最大连续和
//状态转移方程,dp[i] = max(dp[i-1]+nums[i],nums[i]);
/*if(nums.size() == 0) return 0;
vector<int> dp(nums.size());
dp[0] = nums[0];
int res = dp[0];
for(int i = 1 ;i < nums.size(); ++i){
dp[i] = max(dp[i-1]+nums[i],nums[i]);
res = max(dp[i],res);
}
return res;*/
//其实只要记录前一个状态即可
if(nums.size() == 0) return 0;
int tmp = nums[0], res = nums[0];
for(int i = 1; i < nums.size(); ++i){
tmp = max(tmp+nums[i],nums[i]);
res = max(res,tmp);
}
return res;
}
};
用一个数记录以前一位为结尾的最大子序和就行了。状态转移方程就是dp=max(dp+nums[i],nums[i]),就是看当前位加上之前的能更大还是以当前位重新开始一个序列更大
class Solution {
public:
int maxSubArray(vector<int>& nums) {
//dp,滑动窗口不行
//dp[i]记录的是以i结尾的连续子数组能达到的最大值
//dp[i]的转移方程是nums[i]大还是dp[i-1]+nums[i]大
//因为只需要和前一个比较,所以来一个pre记录dp[i-1]的值就行了,再来个res每次比一下
int dp = nums[0];
int res = nums[0];
for(int i = 1; i < nums.size(); ++i){
dp = max(dp+nums[i],nums[i]);
res = max(res,dp);
}
return res;
}
};
需要连续子数组,dp[i]记录的是以当前位为结尾的最大和
状态转移方程:dp[i] = dp[i-1]<0?nums[i]:nums[i]+dp[i-1]
因为只需要记录前一个,所以可以压缩成O(1)
basecase:dp[0] = nums[0],因为至少包含一个数字
class Solution {
public:
int maxSubArray(vector<int>& nums) {
//需要连续子数组,dp[i]记录的是以当前位为结尾的最大和
//状态转移方程:dp[i] = dp[i-1]<0?nums[i]:nums[i]+dp[i-1]
//因为只需要记录前一个,所以可以压缩成O(1)
//basecase:dp[0] = nums[0],因为至少包含一个数字
if(nums.size() == 0) return 0;
int dp = nums[0];
int res = nums[0];
for(int i = 1; i < nums.size(); ++i){
dp = max(dp+nums[i],nums[i]);
res = max(dp,res);
}
return res;
}
};