53. 最大子序和

在这里插入图片描述

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        //最大=最优解=dp,子数组=dp
        //dp[i]代表以当前数字为结尾的最大连续和
        //状态转移方程,dp[i] = max(dp[i-1]+nums[i],nums[i]);
        /*if(nums.size() == 0) return 0;
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        int res = dp[0];
        for(int i = 1 ;i < nums.size(); ++i){
            dp[i] = max(dp[i-1]+nums[i],nums[i]);
            res = max(dp[i],res);
        }
        return res;*/

        //其实只要记录前一个状态即可
        if(nums.size() == 0) return 0;
        int tmp = nums[0], res = nums[0];
        for(int i = 1; i < nums.size(); ++i){
            tmp = max(tmp+nums[i],nums[i]);
            res = max(res,tmp);
        }
        return res;
    }
};

用一个数记录以前一位为结尾的最大子序和就行了。状态转移方程就是dp=max(dp+nums[i],nums[i]),就是看当前位加上之前的能更大还是以当前位重新开始一个序列更大

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        //dp,滑动窗口不行
        //dp[i]记录的是以i结尾的连续子数组能达到的最大值
        //dp[i]的转移方程是nums[i]大还是dp[i-1]+nums[i]大
        //因为只需要和前一个比较,所以来一个pre记录dp[i-1]的值就行了,再来个res每次比一下
        int dp = nums[0];
        int res = nums[0];
        for(int i = 1; i < nums.size(); ++i){
            dp = max(dp+nums[i],nums[i]);
            res = max(res,dp);
        }
        return res;
    }
};

需要连续子数组,dp[i]记录的是以当前位为结尾的最大和
状态转移方程:dp[i] = dp[i-1]<0?nums[i]:nums[i]+dp[i-1]
因为只需要记录前一个,所以可以压缩成O(1)
basecase:dp[0] = nums[0],因为至少包含一个数字

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        //需要连续子数组,dp[i]记录的是以当前位为结尾的最大和
        //状态转移方程:dp[i] = dp[i-1]<0?nums[i]:nums[i]+dp[i-1]
        //因为只需要记录前一个,所以可以压缩成O(1)
        //basecase:dp[0] = nums[0],因为至少包含一个数字
        if(nums.size() == 0) return 0;
        int dp = nums[0];
        int res = nums[0];
        for(int i = 1; i < nums.size(); ++i){
            dp = max(dp+nums[i],nums[i]);
            res = max(dp,res);
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值