简析“自顶向下,逐步求精”的程序设计方法

概念

”自顶向下,逐步求精“是一种通过分解问题来逐步完成程序设计的方式。就好像我们经历过无数的考试一样,当你遇到一题数学题或者物理题时,你是怎样想问题和解决问题的呢?大概都是通过已知条件,逐步求解而得到最终的答案。而程序设计也与此类似,当你面对一个复杂的问题要用程序来解决时,不能直接解决或者太过于困难,你就可以将复杂的问题分解开来,由超级大分为大的、中的、小的、超小的,直到能用很直接的方法解决,最后逐个解决小问题,组合而解决大问题。

这里写图片描述

优点

  • 程序的层次分明、结构清晰, 便于调试。

如果对问题没有分割,代码肯定是冗长,没有清晰的结构和层次,不利于对代码的调试。而通过“自顶向下,逐步求精”来设计,代码由许多小部分组成,出现问题时检查一个个小部分就可以找到bug所在,从而解决。

  • 2.便于集体开发程序

通过“自顶向下,逐步求精”来设计,就可以将一个大程序分解成一个个小模块,交给团队不同人员来完成,便于集体开发程序,提高效率。

实例:用程序计算平面上四边形ABCD的面积,ABCD坐标已知。

首先我们不知道四边形的样式,我们可以将它分成两个三角形再求面积和。

这里写图片描述

然后现在分解为求两个三角形的面积。
求三角形的面积,通过海伦公式

p=(a+b+c)/2)S=sqrt[p(pa)(pb)(pc)]=sqrt[(1/16)(a+b+c)(a+bc)(a+cb)(b+ca)]=1/4sqrt[(a+b+c)(a+bc)(a+cb)(b+ca)]

只需要三角形的边长就可以算出;

这里写图片描述

现在分解为求边长,此时可以直接实现。

这里写图片描述

最后此程序可由此组合而成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值