“自顶向下”
是将复杂、大的问题划分为小问题,找出问题的关键、重点所在,然后用精确的思维定性、定量地去描述问题。
“逐步求精”
是将现实世界的问题经抽象转化为逻辑空间或求解空间的问题。复杂问题经抽象化处理变为相对比较简单的问题。经若干步抽象(精化)处理,最后到求解域中只是比较简单的编程问题。
“自顶向下、逐步求精”的程序设计技术是目前较为时髦的(当然也是较为合理的)找出一个问题的解题算法的一种思维方法。“自顶向下、逐步求精”过程中的每一步,即分解某一具体问题时,主要用到如下四种求精技术:
1. 顺序连接的求精
2. 分支、选择的求精
3. 循环的求精
4. 递归的求精
当问题的子解具有前后关系时,采用第一种顺序连接的求精技术,将问题分解成互不相交的几个子问题的顺序执行。
当问题是分别不同情况而应该进行不同处理时,采用第二种分支、选择的求精技术(构造分支)。这时要注意分支条件。
当问题的子解具有特性:如果有向解的方向前进一步的方法,且不断重复该步骤,即能解决问题,最终达到完全解。则应该采用循环的求精技术(构造循环)。这时一定要弄清循环的初始条件、结束条件和有限进展的一步都是什么.
当问题的某步解法与前边高层次的某步解法具有相同特征属性,只是某些参数不同时,可采用递归的求精技术。这时应注意递归的参数变化规律以及递归出口。
由此可知,所谓”自顶向下,逐步求精“的分析技术实质上是如下图所示过程的反复.