146. LRU 缓存

一、题目在这里插入图片描述

二、思路

  • 题目要求 O(1) 的平均时间复杂度运行 -> 使用Map空间换时间 Map<Integer, Node>
  • Map 通过 key 直接找到对应节点 getNode(key) -> Node
  • 记得只要查过该节点之后就应该把该节点放到最前面 pushFront(Node)
  • put 元素后,在map中添加,记得检查是否超过 capacity,超过则删除在map中的元素,以及在链表中的元素 delete(Node)
  • 这里提到的 pushFront(Node) 和 delete(Node) 都是针对双向队列进行位置移动相关的操作,不涉及 Map。

三、代码

class LRUCache {
    class Node{
        int key,val;
        Node pre, next;

        Node(int key, int val) {
            this.key = key;
            this.val = val;
        }
    }

    Node dummy = new Node(0, 0);
    int capacity;
    Map<Integer, Node> map = new HashMap<>();

	// 初始化双向队列
    public LRUCache(int capacity) {
        dummy.pre = dummy;
        dummy.next = dummy;
        this.capacity = capacity;
    }
    
    
    public int get(int key) {
    	// 从 map 中快速获得 node
        Node node = map.get(key);
        
		// 不存在返回 -1
        if (node == null) {
            return -1;
        }
		// 查询到需要遵循LRU的规则将最近查询的放到队首
        delete(node);
        pushFront(node);
        return node.val;
    }

    public void put(int key, int value) {
        Node node = map.get(key);
        // 已经存在就直接进行更新值,结束 put 方法
        if (node != null) {
            // 更新值
            node.val = value;
            delete(node);
            pushFront(node);
            return ;
        }
        // 不存在就新建一个 node,在双向队列和 map 中同时更新
        node = new Node(key,value);
        pushFront(node);
        map.put(key, node);
		// 更新后检查是否超出容量
		// 超出容量就删除双向队列中的最后一个节点,同时在 map 中删除
        if (map.size() > capacity) {
            Node lastNode = dummy.pre;
            delete(lastNode);
            map.remove(lastNode.key);
        }
    }

	// 将 node 放到双向队列队首
    private void pushFront(Node node) {
        node.next = dummy.next;
        node.pre = dummy;
        dummy.next.pre = node;
        dummy.next = node;
    }
    // 在双向队列中删除 node
    private void delete(Node node) {
        node.pre.next = node.next;
        node.next.pre = node.pre;
    }
}

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */
### LeetCode 146 LRU Cache 的 C++ 实现 LRU(Least Recently Used)是一种常见的缓存淘汰策略,用于管理固定大小的内存空间。当缓存满时,会移除最近最少使用的数据项以腾出空间。 以下是基于双向链表和哈希表实现的 C++ 解决方案: #### 双向链表节点定义 为了高效地维护访问顺序并快速更新节点位置,可以使用自定义的 `ListNode` 类来表示双向链表中的节点。 ```cpp struct ListNode { int key; int value; ListNode* prev; ListNode* next; ListNode(int k, int v) : key(k), value(v), prev(nullptr), next(nullptr) {} }; ``` #### 缓存类设计 通过组合哈希表和双向链表,可以在 O(1) 时间复杂度下完成插入、删除以及查找操作。 ```cpp class LRUCache { private: unordered_map<int, ListNode*> map; // 哈希表存储键到节点指针的映射关系 ListNode* head; // 虚拟头结点 ListNode* tail; // 虚拟尾结点 int capacity; // 容量上限 public: LRUCache(int cap) : capacity(cap) { head = new ListNode(-1, -1); // 初始化虚拟头部 tail = new ListNode(-1, -1); // 初始化虚拟尾部 head->next = tail; // 连接首尾 tail->prev = head; } ~LRUCache() { ListNode* cur = head; while (cur != nullptr) { ListNode* temp = cur; cur = cur->next; delete temp; } } void removeNode(ListNode* node) { node->prev->next = node->next; node->next->prev = node->prev; } void addToHead(ListNode* node) { node->next = head->next; node->prev = head; head->next->prev = node; head->next = node; } int get(int key) { if (!map.count(key)) return -1; // 如果不存在该key,则返回-1 ListNode* node = map[key]; removeNode(node); addToHead(node); return node->value; } void put(int key, int value) { if (map.count(key)) { // 若已存在则更新其值并将它移到最前面 ListNode* node = map[key]; node->value = value; removeNode(node); addToHead(node); return; } if (map.size() >= capacity) { // 当容量达到上限时,移除最后未被使用的节点 ListNode* lastUsed = tail->prev; removeNode(lastUsed); map.erase(lastUsed->key); delete lastUsed; } ListNode* newNode = new ListNode(key, value); // 创建新节点并加入hashMap与链表前端 map[key] = newNode; addToHead(newNode); } }; ``` 上述代码实现了基本功能[^3],其中包含了以下几个核心部分: - **removeNode**: 将指定节点从当前列表中移除。 - **addToHead**: 把某个节点移动至链表开头的位置。 - **get 方法**: 获取对应 key 的值,并将其标记为最新访问过的项目。 - **put 方法**: 插入新的键值对或者覆盖已有条目;如果超出设定的最大数量限制,则清除掉最早之前加载的数据记录。 此版本的时间效率较高,在每次调用 `get()` 或者 `set()` 函数时都能保持常数级时间性能表现[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值