运算放大器噪声分析

运算放大器噪声分析

乐匠良于2020年03月22日翻译,西安

原文引用出处在这里:《Op Amp Noise Analysis》

电阻噪声

电阻产生的噪声依据式(1)计算,
n o i s e = ( 4 k T B R ) noise=\sqrt{(4kTBR)} noise=(4kTBR)
其中
k = 1.38 × 1 0 − 23 k = 1.38 \times 10^{-23} k=1.38×1023 (玻尔兹曼常数);
T = T= T= 温度(单位:K)(标准室内温度 = 273.15 + 摄氏温度℃ = 298 K);
B = B= B= 带宽(单位:Hz);
R = R= R= 电阻(单位:Ω)。

因此, 1 k 1k 1kΩ电阻产生的噪声如式(2)和式(3)所示,
n o i s e = ( 4 × 298 × 1.38 × 1 0 − 23 ) × B noise=\sqrt{(4\times 298 \times 1.38\times 10^{-23})}\times \sqrt{B} noise=(4×298×1.38×1023) ×B

4.09 n V H z 4.09nV\sqrt{Hz} 4.09nVHz
图1展示了一个电阻噪声的仿真电路图,图2展示了仿真配置图。注意,图1中的输出噪声是在输入电压无噪声条件下计算的,即仿真中的电压源V3不含噪声。

img

图1 电阻噪声LTspice仿真图

img

图2 LTspice噪声仿真配置图

仿真结果如图3所示,输出噪声与计算结果一致,其值微微超过 4 n V H z 4nV\sqrt{Hz} 4nVHz

img

图3 电阻噪声仿真结果

运放噪声

好的,那么我们应该怎样计算由运放和电阻构成的电路的噪声呢?这里,我们除了需要考虑运放自身的电压和电流噪声,电阻和电路的增益也会产生额外的噪声。

图4展示了单位增益同相放大电路,即射随电路。这个电路可以在这里下载:运放射随电路噪声

img

图4 单位增益同相放大电路(射随电路)

img

图5 输入噪声电压模型

LTC6241的输入噪声电压密度为 7 − 10 n V / H z 7-10nV/\sqrt{Hz} 710nV/Hz ,输入噪声电流密度在 1 k H z 1kHz 1kHz处为 0.56 f A / H z 0.56fA/\sqrt{Hz} 0.56fA/Hz 。由于我们同时从低阻抗源驱动运算放大器的两个输入端,因此,无需关注电流密度。但是,需要考虑输入噪声电压密度。

要计算一个运算放大器所构成电路的噪声,必须令所有输入接地。稍后我们将看到,这使得反转(反相放大)配置和非反转(同相放大)配置一致。运算放大器的输入噪声电压可以建模为与输入串联的电压,如图 5 所示。

很明显,如图5所示,电路的输入端接地时,输出电压噪声为
输 出 电 压 噪 声 = 输 入 电 压 噪 声 = 7 n V / H z 输出电压噪声=输入电压噪声=7nV/\sqrt{Hz} ==7nV/Hz
LTspice的仿真结果如图6所示。

img

图6 射随器电路输出噪声(无电阻影响时的运放噪声)仿真结果

该仿真结果表明了运算放大器在不受增益或外部电阻影响时的噪声。我们还可以从该电路上看到 LTspice仿真器使用的是 7.2 n V / H z 7.2nV/\sqrt{Hz} 7.2nV/Hz 的输入电压噪声,而不是数据表中的典型值 7 n V / H z 7nV/\sqrt{Hz} 7nV/Hz

现在,我们将检验增益和外部电阻对电路噪声性能的影响。图7显示了增益为2的同相放大电路(非反转放大电路),这个电路能在这里下载:运放同相放大电路噪声

img

图7 增益为2的非反转放大电路

我们前面提到过,在将输入接地如图7电路时,反转和非反转配置是相同的,也就是说同相放大电路和反相放大电路在噪声分析时配置相同,这个现在很容易看到。计算放大器电路的输出噪声有两种方法。

方法 1

对于图7,方法1使用的噪声模型如图8 所示。

img

图8 方法1的噪声模型

Vn1表示运算放大器本身的噪声 7.2 n V / H z 7.2nV/\sqrt{Hz} 7.2nV/Hz ,Vn2表示电阻R1的噪声。现在,我们可以看到R1产生的噪声有效地应用于放大器的反转(反相)输入端,因此受放大器增益的影响,在这种情况下,增益为1(因为噪声没有相位,所以增益-1与+1的增益相同)。Vn3表示电阻R2发出的噪音,不受任何增益的影响。运算放大器本身的噪声应用于放大器的非反转(同相)输入端,因此增益为+2。

要求解总噪声(单位: n V / H z nV/\sqrt{Hz} nV/Hz ),我们需要将每个噪声源的贡献平方,在输出端对它们相和,然后采用平方根。这看起来很复杂,但只涉及简单的(如果有点乏味)的数学。

由式(1)可知,100 欧姆电阻器产生 1.28 n V / H z 1.28nV/\sqrt{Hz} 1.28nV/Hz 的噪声。

因此,在图 8 中放大器电路输出处看到的运算放大器电压噪声和电阻噪声产生的总噪声是:
{ ( 7.2 n V / H z × 2 ) 2 + ( 1.28 n V / H z × 1 ) 2 + ( 1.28 n V / H z ) 2 } = 14.5 n V / H z \sqrt{\{(7.2nV/\sqrt{Hz} \times 2)^{2}+(1.28nV/\sqrt{Hz} \times 1)^{2}+(1.28nV/\sqrt{Hz})^{2}\}}=14.5nV/\sqrt{Hz} {(7.2nV/Hz ×2)2+(1.28nV/Hz ×1)2+(1.28nV/Hz )2} =14.5nV/Hz
我们现在需要考虑运算放大器的电流噪声影响。由于我们的非反转(同相)输入端是接地的(出于噪声分析目的),因此输入噪声电流( 0.56 f A / H z 0.56 fA/\sqrt{Hz} 0.56fA/Hz )可以建模为流入反转(反相)输入端的电流。由于非反转(同相)输入端接地,并且放大器周围有负反馈,因此反转(反相)端位于虚拟接地处。因此,运算放大器的电流噪声仅流经反馈电阻器。从欧姆定律,它产生电压为
( R 2 × i _ n o i s e ) = 100 × 0.56 f A / H z = 56 f V / H z (R2 \times i\_noise)=100 \times 0.56 fA/\sqrt{Hz} = 56 fV/\sqrt{Hz} (R2×i_noise)=100×0.56fA/Hz =56fV/Hz
即使可以忽略不计,要准确计算总输出噪声,我们需要将该电压平方,并将其添加到上面计算的电压噪声的平方中。

因此,总噪声电压为
{ ( 1.45 n V / H z × 1 ) 2 + ( 56 f V / H z ) 2 } = 14.5 n V / H z \sqrt{\{(1.45nV/\sqrt{Hz} \times 1)^{2}+(56fV/\sqrt{Hz})^{2}\}}=14.5nV/\sqrt{Hz} {(1.45nV/Hz ×1)2+(56fV/Hz )2} =14.5nV/Hz
img

图9 LTspice电路仿真结果

电路的LTspice仿真结果为 14.5 n V / H z 14.5nV/\sqrt{Hz} 14.5nV/Hz

方法 二

在放大器的反馈元件中描绘噪声源的位置可能比较棘手。因此,方法2的证明可能更直观、更易于可视化。再次考虑图7中的电路,如果所有输入都接地,则输出也将处于0V。因此,反馈电阻器R2等效为与R1并联。考虑到这一点,图10展示了这一噪声等效电路。

img

图9 方法2的噪声等效电路模型

在这里,反馈电阻器和输入电阻器是并行的,使用并联电阻值计算电阻噪声。但是,使用这种方法,噪声被应用于运算放大器的反转(反相)输入端,但没有反馈电阻。然而,所有电压不会丢失,因为对运算放大器反转(反相)端施加电压与对放大器的非反转(同相)端施加的电压相同,因为如前面所述,我们不关心相位。因此,将噪声电压应用于非反转(同相)输入,则噪声增益为 ( 1 + R 2 / R 2 ) (1+R2/R2) (1+R2/R2)。因此,我们的电压噪声计算为
{ ( 7.2 n V / H z × 2 ) 2 + ( 0.907 n V / H z × 2 ) 2 } = 14.5 n V / H z \sqrt{\{(7.2nV/\sqrt{Hz} \times 2)^{2}+(0.907nV/\sqrt{Hz} \times 2)^{2}\}}=14.5nV/\sqrt{Hz} {(7.2nV/Hz ×2)2+(0.907nV/Hz ×2)2} =14.5nV/Hz
其中 0.907 n V / H z 0.907nV/\sqrt{Hz} 0.907nV/Hz 是两个100 Ω电阻并联时的噪声。这会产生与方法1相同的电压噪声。

同样,流入反转(反相)端的任何噪声电流都会在R2和R1的并联组合上产生电压。这与将噪声电压施加到非反转(同相)端并使其增益 ( 1 + R 2 / R 2 ) (1+R2/R2) (1+R2/R2)相同,因此"电流"噪声为:
( R 1 ∣ ∣ R 2 ) × i _ n o i s e × 2 = ( 100 ∣ ∣ 100 ) × 0.56 f A / H z × 2 = 56 f V / H z (R1||R2) \times i\_noise\times 2=(100||100) \times 0.56 fA/\sqrt{Hz} \times 2 = 56 fV/\sqrt{Hz} (R1R2)×i_noise×2=(100100)×0.56fA/Hz ×2=56fV/Hz

这产生了与方法1相同的电流噪声。

总噪声电压为
{ ( 1.45 n V / H z × 1 ) 2 + ( 56 f V / H z ) 2 } = 14.5 n V / H z \sqrt{\{(1.45nV/\sqrt{Hz} \times 1)^{2}+(56fV/\sqrt{Hz})^{2}\}}=14.5nV/\sqrt{Hz} {(1.45nV/Hz ×1)2+(56fV/Hz )2} =14.5nV/Hz
我们已经讨论了如何计算运算放大器的输出噪声,并发现这取决于放大器的电压和电流噪声规格以及增益和周围的电阻。

选取不同的电阻,例如电阻1kΩ,10kΩ和100kΩ,重复上述内容,则放大器输出总噪声的计算和仿真结果如表1所示。

表1 不同电阻值情况下的噪声计算值和仿真值
R 1 / R 2 R1/R2 R1/R2在1kHz处的噪声计算值在1kHz处的LTspice噪声仿真值
1 k / 1 k 1k/1k 1k/1k 15.47 n V / H z 15.47nV/\sqrt{Hz} 15.47nV/Hz 15.51 n V / H z 15.51nV/\sqrt{Hz} 15.51nV/Hz
10 k / 10 k 10k/10k 10k/10k 23.13 n V / H z 23.13nV/\sqrt{Hz} 23.13nV/Hz 23.21 n V / H z 23.21nV/\sqrt{Hz} 23.21nV/Hz
100 k / 100 k 100k/100k 100k/100k 58.37 n V / H z 58.37nV/\sqrt{Hz} 58.37nV/Hz 59.36 n V / H z 59.36nV/\sqrt{Hz} 59.36nV/Hz
100 / 1 k 100/1k 100/1k 80.33 n V / H z 80.33nV/\sqrt{Hz} 80.33nV/Hz 80.34 n V / H z 80.34nV/\sqrt{Hz} 80.34nV/Hz
1 k / 10 k 1k/10k 1k/10k 89.65 n V / H z 89.65nV/\sqrt{Hz} 89.65nV/Hz 89.97 n V / H z 89.97nV/\sqrt{Hz} 89.97nV/Hz
10 k / 100 k 10k/100k 10k/100k 155.75 n V / H z 155.75nV/\sqrt{Hz} 155.75nV/Hz 156.55 n V / H z 156.55nV/\sqrt{Hz} 156.55nV/Hz

这清楚地表明,如果用于增益设置的电阻器值过大,则运算放大器的噪声也随之不恰当。为了确保获得您渴望的噪声性能,请保持电阻设定的增益与放大器允许的一样低。

这清楚地表明,如果用于增益设置的电阻器值过大,则运算放大器的噪声也随之不恰当。为了确保获得您渴望的噪声性能,请保持电阻设定的增益与放大器允许的一样低[1]。

[1]译者注:除了运放自身的噪声,电阻值和增益会影响放大电路的输出噪声,设计者需要注意。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值