【运算放大器】噪声指标(1)基本理论与噪声计算方法

前言

总结运算放大器噪声指标的基本理论、计算方法。这一部分涉及到的内容较多,且非常枯燥,即使是阅读杨建国老师的书,不熟练时仍会觉得眼花缭乱,因此需要耐下心来,仔细学习,硬着头皮啃也要啃下来。

总结自《你好,放大器》、《德州仪器高性能模拟器件高校应用指南》,以及 TI 高精度实验室课程内容。



一、噪声概述

1.1 噪声的定义与特点

噪声可以定义为一个不希望出现的信号,它掺杂在想要的信号中,从而引起误差。举个例子,在音频中噪声可以表现为丝丝声或者是爆破声,在一个传感器系统中,噪声可以表现为测量到的压力,或者是温度信号的误差。噪声具备以下特点:

  1. 它的波形在任意时刻都是不确定的,因此它是广谱的,有低频也有高频;
  2. 它的幅度又是有限制的,这与数学上的高斯分布近似但不完全一致;
  3. 它具有无限积分趋零性;
  4. 具有短时波动性以及长期稳定性。

1.2 噪声分类

噪声可以归为两种类别:extrinsic noise 外部噪声,intrinsic noise 固有噪声。

外部噪声是指由于外部电路或者是自然因素导致的噪声,例如手机 60 赫兹的电力线噪声和干扰,就是常见的外部噪声;宇宙辐射则是一个由于自然因素,引起外部噪声的例子;固有噪声是由电路的元器件引起的,比如电阻和半导体器件都可以产生噪声。固有噪声是可估计的,而外部噪声则很难估计。因此计算时,主要针对固有噪声。

运放常见的噪声根源有两类,一类为 1/f 噪声,又称为闪烁噪声、低频噪声,其电压噪声密度曲线随着频率的上升而下降;一类为白噪声,又称为平坦噪声、宽带噪声、约翰逊噪声、热噪声、电阻噪声,其电压噪声密度曲线是一条直线,与频率无关。

还有一类噪声是突发噪声,或者叫 popcorn noise 爆米花噪声。爆米花噪声表现为电压或者电流的跳变,通常频率在 0.1 到 1k 赫兹的范围内,之所以叫这个名字是因为当用扬声器播放它的时候,听起来就像是爆米花在跳动。爆米花噪声是由于半导体材料中的细微缺陷导致的,但是我们无法用数学方法估计得到这个噪声。

运放组成的放大电路,在正常工作时,其输出必然包含具有确定有效值的噪声。有的电路输出噪声大,有的很小,这取决于器件的选择、电路的设计,以及环境。对一个给定的电路以及确定的环境,其输出噪声的大小是可以计算出来的。一般计算时,对于运放的噪声,计算 1/f 噪声和白噪声即可。


二、噪声密度及噪声有效值计算

2.1 1/f 噪声有效值计算

所谓的 1/f 噪声,是说噪声密度曲线与频率之间的关系满足 1/f 规律。在 1Hz 处,设 1/f 噪声的电压密度为 C,C的单位为 V/√Hz ,其电压密度随频率变化的表达式为:

D U − 1 f ( f ) = C 2 1 H z f (1) D_{U-1f}(f)=\sqrt{C^2\frac{1Hz}{f}}\tag1 DU1f(f)=C2f1Hz (1)

在一个规定的频率范围内,1/f 噪声电压有效值为:

U N − 1 f = C 1 H z l n f b f a (2) \color{red}U_{N-1f}=C\sqrt{1Hz}\sqrt{ln\frac{f_b}{f_a}}\tag2 UN1f=C1Hz lnfafb (2)

2.2 白噪声有效值计算

所谓的白噪声,是指噪声电压密度恒定,与频率无关。因此,其噪声电压密度为:

D U − w h ( f ) = K (3) D_{U-wh}(f)=K\tag3 DUwh(f)=K(3)

K的单位同样为 V/√Hz 。在一个规定的频率范围内,白噪声电压有效值为:

U N − w h = K f b − f a (4) \color{red}U_{N-wh}=K\sqrt{f_b-f_a}\tag4 UNwh=Kfbfa (4)

2.3 总噪声有效值计算

运放的等效输入噪声由 1/f 噪声和白噪声合并形成,它们是不相关的。运放的等效输入噪声等于 1/f 噪声有效值和白噪声有效值的平方和开根号,计算式为:

U N − I = U N − 1 f 2 + U N − w h 2 (5) \color{red}U_{N-I}=\sqrt{U_{N-1f}^2+U_{N-wh}^2}\tag5 UNI=UN1f2+UNwh2 (5)


三、从噪声电压密度曲线中获得 C 和 K

运放生产厂家提供的数据手册中,只有总的噪声电压密度曲线。例如:

在这里插入图片描述

可以看出,厂家仅给出了包含 1/f 噪声和平坦区噪声的噪声电压密度曲线,它们都有这样的特征:低频段以 1/f 噪声为主,且随着频率的上升而下降,渐渐的,1/f 噪声没有了, 呈现出平坦区噪声。

问题是,厂家的图中并没有区分 C 和 K 的概念,需要我们自己去确定。

3.1 K 的确定

K 指电压密度曲线中白噪声电压密度。两种方法可以获得 K。

  1. 读图法。频率越高,1/f 噪声影响越小,电压密度中就仅包含白噪声的 K 了。因此方法很简单,找到图中最高频率点,直接读数值即可。ADA4000-1:16nV/√Hz 左 右,ADA4899-1:1nV/√Hz 左右,ADA4062-2:37nV/√Hz 左右。
  2. 数据法。多数数据手册会在指标表里给出。如下:

在这里插入图片描述

这与我们肉眼读出的数据基本吻合。


3.2 C 的确定

C 指 1/f 噪声在 1Hz 处的噪声电压密度。多数情况下,需要从噪声电压密度曲线图中间接获得。

3.2.1 曲线涵盖 1Hz

如果电压密度曲线中 1Hz 处的值可以读到,那么它是 1/f 噪声和白噪声的合并,结合式(1)和(3),有:

D U ( 1 H z ) = D U − 1 f ( 1 H z ) 2 + D U − w h ( 1 H z ) 2 = C 2 + K 2 (6) D_{U}(1Hz)=\sqrt{ {D_{U-1f}(1Hz)}^2+{D_{U-wh}(1Hz)}^2}=\sqrt{C^2+K^2}\tag6 DU(1Hz)=DU1f(1Hz)2+DUwh(1Hz)2 =C2+K2 (6)

可解得:

C = D U ( 1 H z ) 2 − K 2 (7) \color{red}C=\sqrt{ {D_{U}(1Hz)}^2-K^2}\tag7 C=DU(1Hz)2K2 (7)

前文图中 Figure47 为 ADA4062-2 密度图,读得 D U ( 1 H z ) D_U(1Hz) DU(1Hz) = 105nV/√Hz,且已知 K = 36nV/√Hz,则解得 C = 99nV/√Hz。Figure25 为 ADA4000-1 密度图,读得 D U ( 1 H z ) D_U(1Hz) DU(1Hz) = 51nV/√Hz,且已知 K = 16nV/√Hz,则解得 C = 48.4nV/√Hz。

3.2.2 曲线不涵盖 1Hz

某些数据手册,特别是高速运放,其电压密度曲线并未涵盖 1Hz,也就读不到 DU(1Hz)。比如 ADA4899-1,如 Figure13,仅能读到 D U ( 10 H z ) D_U(10Hz) DU(10Hz) = 10 nV/√Hz,可先找到图中最小频率 fmin,利用下式计算:

C = f m i n 1 H z ( D U 2 ( f m i n ) − K 2 ) (8) \color{red}C=\sqrt{\frac{f_{min}}{1Hz}(D_U^2(f_{min})-K^2)}\tag8 C=1Hzfmin(DU2(fmin)K2) (8)

代入数值可解出, C A D A 4899 − 1 C_{ADA4899-1} CADA48991 = 31.5 nV/√Hz。显然,式 8 相对于式 7 更为普适。

但是,对同一张图用上述两种方法解得的 C 并不完全一致, 甚至会出现较大的差异,比如 Figure25。其实这就是数据手册中不给出 C 和 K 的原因:上面讲的,都是简化的模型,实际的运放噪声密度曲线,不是简单用 1/f 噪声和白噪声合并就可以准确得到的,最终还得依赖于实测结果。幸运的是,多数情况下,1/f 噪声的影响力远小于白噪声,这点误差算不了什么。

3.2.3 从转角频率获得

有些数据手册会明确给出噪声转角频率,称之为 f c o r n e r f_{corner} fcorner,定义为此频率处 1/f 噪声和白噪声的电压密度相等。即:

D U − 1 f ( f c o r n e r ) = D U − w h ( f c o r n e r ) = C 1 H z f c o r n o r = K D_{U-1f}(f_{corner}) = D_{U-wh}(f_{corner}) = C\sqrt{\frac{1Hz}{f_{cornor}}} = K

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值